Abstract:
The present invention relates to a method of thermally producing a flow of a working medium, especially for driving turbines and the like. The working medium is heated to a predetermined temperature in a closed space at a pressure, which is higher than the steam formation pressure of the working medium at the predetermined temperature, and in liquid phase in the form of a jet atomized in droplets is tapped in a controlled flow from the closed space through one or more outflow nozzles and against a lower pressure.
Abstract:
A total energy heating unit which provides not only heat but also hot water and electricity is set forth. A single source of fuel is used such as coal, wood, or even compact dry leaves. The fuel is burned in an airtight firebox surrounded on three sides by a hot air containment unit, in which is located a means for generating steam. On top of the firebox is located an enclosure for water circulating tubes. As the fuel burns, it not only furnishes heat for heating air forced through the containment unit and then into a ducting system, but also provides hot air for heating water circulating to a hot water storage tank, and heat for heating a metal block which, when impinged with water droplets, results in generating steam for operation of a steam turbine for the generation of electricity.
Abstract:
Power is recovered from the vaporization of liquefied natural gas by liquefying a multicomponent refrigerant. The liquefied multicomponent refrigerant is then pressurized, vaporized and expanded in two stages through two expanders which are coupled to a generator.
Abstract:
A heat pumping process for the generation of industrially useful heat energy achieves an improved fuel effectiveness by feeding back to the process part of its otherwise output heat energy as an input to assist in compressing the process evaporized performing fluid. An equivalent amount of extraneous fuel otherwise required to carry out the mechanical work now done by the fed back energy is thus replaced.
Abstract:
An apparatus for generating thermal and electrical energy includes an internal combustion engine connected to and adapted to drive a generator for providing electrical power and a brake for generating thermal energy. In one embodiment, a heat carrier flows through appropriate conduits for absorbing heat energy from the brake, from the combustion chamber of the engine, and from the engine exhaust gases and delivers the heat energy to a end-use heat exchanger, for example, a room or space heater. In a second embodiment, the engine exhaust gas flow is used to drive a gas turbine that, in turn, drives a compressor in a thermal cycle to provide additional heat transfer capability.
Abstract:
A method and apparatus are disclosed for compressing a portion of low pressure steam into steam of higher pressure in which the means for doing so are energized by the heat energy of the remainder of the low pressure steam.
Abstract:
A method for transporting heat over long distances in which waste heat from large power plants is utilized. The condenser back-pressure is increased to a level so that the condenser cooling water acquires a temperature in the range of 25.degree.-50.degree. C. The cooling water is subsequently pumped through large pipelines to heat consumer centers where it serves as a heat source for heat pumps. The heat content of the condenser cooling the water is used for raising the temperature of a heating medium to such a degree, that the heat content can be used for heating purposes. After giving off the heat, the condenser cooling water may be used for cooking or drinking purposes, or for the dilution and cooling of waste water.
Abstract:
A drive turbine having a steam pressure-increasing device connected thereto. Steam taken from a high pressure steam source is utilized as the driving fluid for the pressure-increasing device disposed between the drive turbine inlet and a lower pressure drive turbine steam supply source. The pressure-increasing device increases the pressure level from the steam supply to the drive turbine to maintain a predetermined level of pressure in the supply steam flow.
Abstract:
A device for scavenging condensate from long heat exchange tubes by recirculating the steam which is passed through one portion of a U-shaped tube bundle through another portion of the tube bundle and thus reducing the build-up of slugs of liquid in the tubes by increasing the velocity therethrough without reducing the heat transfer surface and also protecting the welds which seal the tubes to the tube sheet from thermal shocks and stresses by incorporating a thermal sleeve in the device which cooperates with the scavenging of condensate from the tube to provide optimum protection.