Abstract:
A scanner comprising a platen positioned along a first plane and configured to support an article to be scanned; one or more illuminators positioned below the platen along a second plane parallel to the first plane, and configured to emit light beams; one or more mirrors positioned between the platen and the one or more illuminators, each of the mirrors being configured to direct a light beam having a directional component parallel to the first and second planes emitted by the illuminators onto the article on the platen at the imaging point; one or more sensors configured to detect the light reflecting off the article at the imaging point along a sensor optical path; and a carriage mechanism constructed to affect relative movement parallel to the first and second planes between platen, and the one or more illuminators and the one or more mirrors in a scanning direction.
Abstract:
A scanning module includes a body, a reflecting unit, and an image capture unit. The body includes a reflecting chamber disposed in a surrounding wall. The surrounding wall is formed with an incident hole allowing an incident light field to be transmitted into the reflecting chamber therethrough along an incident axis. The reflecting unit is disposed within the reflecting chamber, and includes a first reflector for reflecting the incident light field, as well as second and third reflectors for reflecting light transmitted from the first reflector to the image capture unit. An angle formed between the incident axis and a normal line of the first reflector is not smaller than 30 degrees. The image capture unit is disposed nearer to the incident hole than the first reflector along a direction of the incident axis, and includes a lens, and a sensing member.
Abstract:
An image reading apparatus includes a plurality of sensor IC chips aligned in a row. Each of the sensor IC chips incorporates a plurality of light receiving elements. The plurality of light receiving elements successively output image signals as serial analog signals corresponding to received amount of light upon receiving light from an object to be read. The number of the sensor IC chips is an integer multiple of three. The sensor IC chips are divided into blocks. The number of the blocks is an integer multiple of three. The image signals are outputted on a block-by-block basis.
Abstract:
A lighting device includes a light source that illuminates an object of illumination, a reflecting member provided opposite the light source so as to direct a first part of illuminating light emitted therefrom to the object of illumination, and a light-blocking member provided between the light source and the object of illumination and between the reflecting member and the object of illumination. The light-blocking member blocks the first directed part of the illuminating light and a second part of the illuminating light directly illuminating the object of illumination with a certain ratio of a light-blocking rate for the first directed part of the illuminating light to a light-blocking rate for the second directly illuminating part of the illuminating light.
Abstract:
An image reading imaging optical system for imaging image information on a line sensor and reading the image information has an imaging optical element including a plurality of off-axial reflecting surfaces differing in the direction of incidence and the direction of emergence of a reference axis ray from one another and having curvatures.
Abstract:
Systems and methods for providing multiple object planes in an optical image scanner are provided. One embodiment is an optical head configured to scan an object, comprising a rod-lens array positioned to focus light reflected off the document, an optical sensor array for receiving light focused through the rod-lens, and a reflective surface variably positioned relative to the rod-lens array for reflecting light from the object to the rod-lens array. Another embodiment comprises a method for providing multiple object planes in an optical image scanner comprising positioning an optical head relative to a platen to locate a primary focal point of a rod-lens array at a first object plane and adjusting the position of an optical sensor array relative to the rod-lens array to relocate the primary focal point of the rod-lens array at a second object plane.
Abstract:
A lighting device includes a light source that illuminates an object of illumination, a reflecting member provided opposite the light source so as to direct a first part of illuminating light emitted therefrom to the object of illumination, and a light-blocking member provided between the light source and the object of illumination and between the reflecting member and the object of illumination. The light-blocking member blocks the first directed part of the illuminating light and a second part of the illuminating light directly illuminating the object of illumination with a certain ratio of a light-blocking rate for the first directed part of the illuminating light to a light-blocking rate for the second directly illuminating part of the illuminating light.
Abstract:
An image sensor module includes a light source unit that emits a linear light beam elongate in a primary scanning direction to an object to be read, and a lens unit including an incidence surface and an output surface oriented opposite to each other. The lens unit is configured to receive light from the object through the incidence surface and output the light through the output surface. The module also includes a sensor IC that receives the light outputted from the output surface, a housing that holds the light source unit and the lens unit, and a support member that supports the lens unit such that the incidence surface is located more distant from the sensor IC than the output surface in a secondary scanning direction. The support member includes a reflection surface that reflects the light from the object toward the incidence surface.
Abstract:
Provided is an image scanning unit which makes it possible to improve scanning accuracy while also making the overall body thinner by appropriately positioning a plurality of reflection members within an effective space in a carriage frame without wasting space. An image scanning unit, wherein a frame is divided into at least two spaces facing an irradiation surface, a first accommodation unit for accommodating a light source unit is formed in one of the spaces, a second accommodation unit for accommodating at least one reflection member is formed in the other adjacent space, a first reflection member for initially receiving light reflected from the irradiation surface is positioned at the side opposite the irradiation surface with the first accommodation unit positioned therebetween, and a light-shielding member is provided between the first reflection member and the reflection member positioned in the other space and prevents light that has strayed from a scanning light path from the first reflection member from being incident on the reflection member in the other space.
Abstract:
A light projecting apparatus of a scanner module, including: a substrate, a plurality of light emitting diodes (LEDs), positioned on the substrate and adapted to generate a plurality of incident beams; a diffusion plate, corresponding to the plurality of LEDs, adapted to receive the plurality of incident beams and diffuse the plurality of incident beams uniformly over a scanned object and including: a first plane, receiving the plurality of incident beams; two end faces; connected to the two ends of the first plane in a transverse direction; and a second plane, the two ends thereof being respectively connected to the two end faces, adapted to diffuse the plurality of incident beams uniformly over the scanned object and including: a plurality of second transverse concave portions, adapted to diffuse the plurality of incident beams; and a plurality of second transverse convex portions, adapted to gather the plurality of incident beams, where the plurality of second transverse convex portions and the plurality of second transverse concave portions are interlaced in a transverse direction, allowing the plurality of incident beams to be diffused uniformly over the scanned object.