Abstract:
An image forming optical element is provided, in which an incident unit having a first lens face to which a light beam output from an original document (object) is input, an output unit having a second lens face outputting the light beam, and a bent unit connecting the incident unit and the output unit at an angle are integrally formed into a transparent medium. The bent unit has a reflection face reflecting the incident light beam input to the first lens face and guiding the light beam to the second lens face. The incident light beam is collected at any of the incident unit, the bent unit, and the output unit to form an intermediate image of the object, and the intermediate image is formed on the output side of the second lens face to form an erection image of the object.
Abstract:
An image reading unit includes an image reading section that reads an image of a document in a one-dimensional direction by one-dimensionally aligned imaging elements, a light source that irradiates an image reading region by the image reading section with light, and a rotation head that holds the image reading section and the light source in a manner that the image reading section and the light source are rotatable relative to the document about a rotation axis which is parallel to an alignment direction of the imaging elements.
Abstract:
This image reading apparatus, includes: a first retaining member that retains a lens unit; a second retaining member that retains a sensor unit; and a positioning member that sets a relative position between the first retaining member and the second retaining member, wherein the positioning member comprises: a first concave portion that is sagged from a first contact surface to be in contact with the first retaining member; and a second concave portion that is sagged from a second contact surface to be in contact with the second retaining member, and the positioning member is fixed to the first retaining member and the second retaining member by an adhesive filled in the first concave portion and the second concave portion.
Abstract:
An optical module 100 includes an optical path unit 101 including a plurality of reflectors 104 for securing an optical path of reflected light from a manuscript, an image processing unit 102 including a reading device 105 which reads image information on the manuscript based on the reflected light from the manuscript entered via the optical path, and a connecting component 103 which connects the optical path unit 101 and the image processing unit 102 so that their positional relation will become a prescribed state.
Abstract:
Warpage and twist of a solid-state image sensing apparatus is controlled, thereby preventing displacement occurring to the solid-state image sensing apparatus when it is mounted on a printed circuit board. The solid-state image sensing apparatus comprises a plurality of outer leads, and the outer leads each comprises a horizontal portion protruding in the horizontal direction from a side face of a package body for encasing a solid-state image sensing chip therein, an end portion extending in a direction orthogonal to the horizontal portion, and disposed directly below the horizontal portion, a mid portion positioned between the horizontal portion, and the end portion, a first bend formed between the horizontal portion, and the mid portion, and a second bend formed between the mid portion, and the end portion.
Abstract:
A scanning device includes a scanner body, a scanning unit, a lens unit, a sensing unit, and a fastening unit. The scanner body has a bottom surface that is formed with two slots. The fastening unit includes two first fastening members disposed respectively within the slots, and two second fastening members engaging respectively and threadably the first fastening members so as to fasten the sensing unit to the scanner body.
Abstract:
In a color marking assembly, a series of ROS units are aligned above a photoconductive surface. These units have inboard and outboard mounts connecting them to this assembly. The inboard mounts are attached to a first side of the ROS, and the outboard mounts are attached to a second side of the ROS unit.The inboard mount is an elongated bar extending beyond the height of the ROS unit. This elongated bar has hinged portions on both its top and bottom connections to the ROS unit. The outboard mount has a ball bearing or sphere configuration. This configuration and the inboard mount enable the ROS unit to be easily deskewed when required.
Abstract:
An optical scanning module with linear CMOS image sensor (linear CMOSM) applied to scanners or multi-function printers is disclosed. The optical scanning module includes a light source for emitting light, a reflection mirror group, a focus lens group, and a linear CMOS image sensor having at least one linear CMOS image sensor unit and one A/D analog-digital converter. The light source can be a cold cathode fluorescent lamp (CCFL), a Xenon lamp or linear LED. Light emitted from the light source projects onto an object being scanned. Then the light reflected by the object being scanned becomes scanning light, passing through the reflection mirror group and the focus lens group and being focused on the linear CMOS image sensor for being converted into electrical signal. By A/D conversion of the linear CMOS image sensor unit in the linear CMOS image sensor, signal is sent out in USB or LVDS format so as to achieve high scanning speed, low distortion, large depth of focus and convenient transmission.
Abstract:
The present invention relates to a scanning method, more particularly, to a two-directions scanning method by using a user interface (UI). At first, a scanning mode is chosen and the first dpi (dots per inch) of the preview procedure is set in the user interface. Then an instruction is keyed in the user interface to make a scan head move along the first scanning direction by using the first dpi and start the first scanning procedure. The first scanning procedure is a preview procedure. After finishing the first scanning procedure, a user can view the first image, which is got from the first scanning procedure, on a monitor and the scan head moves along the second scanning direction by using the second dpi to start the second scanning procedure. The second image data, which is got from the second scanning procedure, is saved in a memory. The second dpi is usually the highest dpi of the scan head. Following the needs of the user, the second dpi can be preset in the user interface to increase the scanning rate of the second scanning procedure. After the user selects a scope of the first image, which he or she wants to get, and the third dpi is set, the user interface will get the partial second image, which is corresponding to the scope of the first image that is selected by the user, by using a program to adjust a graph image coordinate and a dpi scale. At last, the third image, which is got according to the third dpi and the scope of the first image that he or she wants to get, is shown on the monitor.
Abstract:
A light emitting device (1) includes a light emitting element (2), a substrate (3), a reflecting plate (4), and a screw member (5). The light emitting element is mounted in the substrate. The reflecting plate is arranged on the substrate. The screw member fixes the reflecting plate and the substrate to each other. The substrate includes a first surface (7), a second surface (8) on an opposite side of the first surface, and an applied part (11) on which the light emitting element is mounted. The reflecting plate includes a third surface (9) that comes into contact with the first surface, a fourth surface (10) on an opposite side of the third surface, and an opening portion (6). The opening portion penetrates the reflecting plate and opens on the third surface and the fourth surface. The opening portion has the shape such that an opening space on a side of the third surface of the reflecting plate is smaller than an opening space on a side of the fourth surface of the reflecting plate. The screw member penetrates the first surface of the substrate and the third surface of the reflecting plate from the second surface of the substrate towards an area in which the opening portion of the reflecting plate is not formed and to which the opening portion is near, whereby the screw member fixes the substrate and the reflecting plate to each other.