Abstract:
An apparatus for merging real and virtual images in which points in three dimensions of an actual scene are obtained and selected in a random fashion and in a number sufficient to track the movement of the three dimensional scene relative to an observer wearing the apparatus. Updating of selected points occurs responsive to movement of a video camera pair observing the actual scene. The position and orientation of the unit housing the video camera pair is utilized to properly merge a generated virtual image with the real image. Selection of points and orientation of the unit relative to a three dimensional real image are obtained in real time. Microprocessor-based apparatus is utilized to perform the method of the invention.
Abstract:
Recent advances in surface techniques have lead to the development of extremely small (sub-micron) scale features. These techniques allow the formation of polymer micro-lenses as well as variable focus liquid lenses. The present invention primarily concerns the use of small scale lenses for the fabrication of novel displays which exhibit three-dimensional (3D) effects. Both still images and video images (or other motion images) can be generated.
Abstract:
A system and corresponding method for generating stereoscopic image from modelling data and camera animation curve data created in the process of creating a computer graphics animation sequence intended for 2D display. The system comprises a database in which the modelling data and the original camera animation curve data are stored, as well as a stereoscopic camera animation curve data generator and an animation sequence renderer. The stereoscopic camera animation curve data generator inputs the original camera animation curve data and generates stereoscopic camera animation curve data for at least one stereoscopic camera which is fixed in position and alignment with respect to another stereoscopic camera (which may be the original camera used to generate the original computer graphics animation sequence). The renderer inputs the stereoscopic camera animation curve data and the modelling data and generates stereoscopic image data.
Abstract:
The stereoscopic CG image generating apparatus and a stereoscopic. TV apparatus, has a projection transformation section which, based on three-dimensional structural information describing a three-dimensional shape of an object, generates a plurality of two-dimensional projection models as viewed from a plurality of viewpoints, a distance information extraction section which generates a camera-to-object distance information used for calculations in the projection transformation section, and a camera parameter determining section which, based on the output of the distance information extraction section, the screen size of a stereoscopic image display device for displaying finally generated two-dimensional projection models, and a viewer's viewing distance, determines camera parameters so that stereoscopic CG images will be brought within the viewer's binocular fusional range. According to the thus constructed stereoscopic CG image generating apparatus and stereoscopic TV apparatus, proper camera parameters (focal length or field of view, camera spacing, and converging point) are determined based on the camera-to-object distance information, the magnitude of parallax of the generated stereoscopic CG images on the display device (or in a window on the display screen), and the viewing distance, so that easy-to-view stereoscopic CG images are automatically generated regardless of the display size, and by horizontally translating left-eye and right-eye images, binocular parallax of displayed images is automatically brought within the viewer's binocular fusional range regardless of the size of a stereoscopic display used.
Abstract:
An apparatus for merging real and virtual images in which points in three dimensions of an actual scene are obtained and selected in a random fashion and in a number sufficient to track the movement of the three dimensional scene relative to an observer wearing the apparatus. Updating of selected points occurs responsive to movement of a video camera pair observing the actual scene. The position and orientation of the unit housing the video camera pair is utilized to properly merge a generated virtual image with the real image. Selection of points and orientation of the unit relative to a three dimensional real image are obtained in real time. Microprocessor-based apparatus is utilized to perform the method of the invention.
Abstract:
A computer system stereoscopically projects a three dimensional object having an interface image in a space observable by a user. The user controls the movement of a physical object within the space while observing both the three dimensionally projected object and the physical object. The computer system monitors the position of the user to determine the position of the interface image within the space and further monitors the movement of the physical object to determine its position. A control signal is generated in response to the position of the physical object intersecting the position of the interface image. For example, a word processing program is indicated by an interface image such as an icon including the letter “W” three dimensionally projected within the space. The word processing program is activated when the user's finger moves within the space to touch the projected icon. The interface allows the user to observe the projected icon, physical finger and their intersection within the space. The physical object may also be extended with a stereoscopic extension image generated by the computer system in response to determining the position and orientation of the physical object.
Abstract:
According to an aspect, a display device includes: a plurality of first image regions; a plurality of second image regions arranged alternatingly with the first image regions; one or more first data lines arranged in each of the first image regions; one or more second data lines arranged in each of the second image regions; a constant potential line configured to receive a constant potential; a switching signal line configured to supply a switching signal; and a switching circuit configured to switch a coupling destination of each of the one or more second data lines between any one of the first data lines arranged in a corresponding first image region adjacent to a respective second image region and the constant potential line, based on the switching signal.
Abstract:
An imaging device includes: an image sensor; an imaging optical system; a movable mask; and a second filter. The imaging optical system forms an image of a subject on the image sensor, by using a first optical path and a second optical path involving parallax relative to the first optical path. The movable mask includes a first filter transmitting light in a first wavelength band and a light shielding section, and is movable relative to the imaging optical device. The second filter transmitting light in a second wavelength band different from the first wavelength band is provided in the second optical path.
Abstract:
An apparatus is described that includes an integrated two-dimensional image capture and three-dimensional time-of-flight depth capture system. The three-dimensional time-of-flight depth capture system includes an illuminator to generate light. The illuminator includes arrays of light sources. Each of the arrays is dedicated to a particular different partition within a partitioned field of view of the illuminator.
Abstract:
There is provided an imaging apparatus including a first polarizing unit that polarizes light from an object, a lens system that condenses light from the first polarizing unit, and an imaging element array that has imaging elements arranged in a matrix of a first direction and a second direction orthogonal to the first direction, has a second polarizing unit arranged on a light incident side, and converts the light condensed by the lens system into an electric signal.