Abstract:
A soft decision analyzer system is operable to interconnect soft decision communication equipment and analyze the operation thereof to detect symbol wise alignment between a test data stream and a reference data stream in a variety of operating conditions.
Abstract:
A method and apparatus are provided for performing a channel decoding operation based on effective noise in a mobile communication system. The method includes detecting effective noise including additive noise that occurs in a channel environment between the signal receiving apparatus and a signal transmitting apparatus and channel estimation noise that occurs during a channel estimating operation the signal receiving apparatus; generating a log likelihood ratio (LLR) based on the detected effective noise; and performing channel decoding based on the generated LLR.
Abstract:
Disclosed is a broadcasting signal transmission device, a broadcasting signal reception device, and a method for transmitting/receiving a broadcasting signal using same. The method for receiving the broadcasting signal comprises the following steps: receiving the broadcasting signal, which includes a transmission frame, wherein the transmission frame includes a plurality of PLPs, which transmit components that constitute a broadcasting service, first signaling information and second signaling information, which include the signaling information of the plurality of PLPs, a first preamble signal, which has been signaled with a preamble format, and a second preamble signal, which has been signaled with pilot pattern information, wherein one of the plurality of PLPs is a base PLP, which includes a program number that corresponds to the broadcasting service and program map table information, which has been signaled with identifying information for each of the PLPs; demodulating the broadcasting signal based on the first and the second preamble signals; FEC decoding the demodulated broadcasting signal; and identifying a PLP group that includes the plurality of PLP from the FEC decoded broadcasting signal based on the first and the second signaling information, decoding at least one PLP of the identified PLP group, and providing the broadcasting service.
Abstract:
The present invention provides a method for transmitting a broadcast signal. The method for transmitting a broadcast signal according to the present invention may comprise the steps of: encoding data pipe (DP) data corresponding to each of a plurality of DPs which transmit at least one service or service component; generating at least one signal frame by mapping the encoded DP data to data symbols; modulating data present in the at least one signal frame by means of an OFDM scheme; and transmitting a broadcast signal including the modulated data.
Abstract:
A method and an apparatus for receiving broadcast signals thereof are disclosed. The apparatus for receiving broadcast signals, the apparatus comprises an receiver to receiving the broadcast signals, a demodulator to demodulate the received broadcast signals by an OFDM (Orthogonal Frequency Division Multiplex) scheme, a frame parser to parse a signal frame from the demodulated broadcast signals, wherein the signal frame includes service data and signaling data, a decoder to decode the signaling data based on a mode of the signaling data, wherein the signaling data is categorized to plural modes based on a length of the signaling data and modcod information and a decoder to decode the service data.
Abstract:
A method and apparatus for demapping a double squared quadrature amplitude modulated (DSQ) symbol is disclosed. One or more first log likelihood ratios (LLRs) are determined, for a first subset of constellation points of a corresponding DSQ constellation, using an LLR approximation. One or more second LLRs are determined, for a second subset of constellation points of the DSQ constellation, using a lookup table. The DSQ symbol is then demapped to one of a plurality of constellation points of the DSQ constellation based on the first and second LLRs. For some embodiments, the first subset of constellation points may correspond with an inner region of the DSQ constellation and the second subset of constellation points may correspond with an outer region of the DSQ constellation.
Abstract:
The present technique relates to a demodulation device, a demodulation method and a program capable of realizing a demodulation process at a rate equivalent to a case where I and Q channel signals are not inverted, even when the I and Q channel signals are inverted. A frequency correction unit establishes synchronization of a frequency and clock based on a signal from a frequency synchronization unit. A channel inversion detection unit of a frame synchronization unit detects presence or absence of inversion of I and Q channel signals, and supplies, as a detection result, a channel inversion detection result to the channel inversion control unit. The channel inversion control unit switches the I and Q channel signals if the inversion has occurred, based on the channel inversion detection result. This technique can be applied to a demodulation device.
Abstract:
A transmitting system and a method of transmitting digital broadcast signal are disclosed. The method of transmitting digital broadcast signal includes generating signaling data including a transmission parameter, wherein the transmission parameter includes a protocol version field identifying between a first transmission mode and a second transmission mode, forming a data group including mobile service data and the signaling data, forming mobile service data packets including the mobile service data and the signaling data in the data group, transmitting the digital broadcast signal including the data group.
Abstract:
A post-equalization technique for recovering data bits from a coherent modulation optical signal is implemented in the digital domain by iteratively performing a decision-directed least mean square channel equalization step, a digital post filter step and a maximum likelihood sequence estimation step so that the symbol decisions of the previous iteration are fed to the decision directed least mean square channel equalization step to successively improve the symbol decisions. In an experimental setup, the iterative technique demonstrated performance improvement mitigating the bandwidth limitation as compared to a corresponding non-iterative technique.
Abstract:
A receiver node is operable to receive rateless encoded data packets from a transmitter node. The receiver node includes estimation logic operable to estimate a transiting number of rateless encoded data packets transiting between the receiver node and the transmitter node; determining logic operable to determine an acknowledgement number of received rateless encoded data packets, the acknowledgement number of received rateless encoded data packets including a difference between a decoding number of rateless encoded data packets estimated to be required from a batch of rateless encoded data packets to decode the rateless encoded data packets from the batch and the transiting number of rateless encoded data packets; and acknowledgement logic operable to transmit an acknowledgement to the transmitter node to cause the transmitter node to cease transmission of rateless encoded data packets from the batch of rateless encoded data packets when a received number of received rateless encoded data packets from the batch of rateless encoded data packets achieves the acknowledgement number of received rateless encoded data packets.