摘要:
For detecting an error of an A/D converter, which is designed to generate at least one digital output signal, which includes a quantity of output data bits, based on at least one analog input signal, and during a conversion, to generate a thermometer code which includes a quantity T of output data values, the detection method includes: ascertaining a first parity directly for the output data bits of the output signal; making a prediction for the output data bits on the basis of the T output data values of the thermometer code; ascertaining a second parity, which is a reverse of the first parity, for the predicted output data bits; and detecting an error for the A/D converter when both the first and second parities are identical.
摘要:
A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit wide vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.
摘要:
One embodiment of the invention is directed to a method comprising an act of performing digital correction of an offset in a system comprising an analog-to-digital converter (ADC) having a usable input range that is greater than a nominal input range, wherein the offset exists at an input of the ADC. Another embodiment of the invention is directed to a system comprising an ADC having a usable input range that is greater than a nominal input range, wherein an offset exists at an input of the ADC and the offset is corrected using digital correction.
摘要:
A high speed A/D converter includes a series of encoder sections for converting a thermometer code to a gray code and an error signal production section for detecting a babble error in the gray code and generating an error signal indicating such a babble error. An error correction section corrects babble errors in the gray code in response to the error signal. The corrected gray code is then converted to a binary code with a gray code to binary code converter. When the high speed A/D converter is incorporated in a semiconductor device, the A/D converter may be tested using a sampling clock having a phase which varies successively with respect to the input analog signal to sample the analog signal, and then evaluating the corresponding generated digital signal.
摘要:
One embodiment of the invention is directed to a method comprising an act of performing digital correction of an offset in a system comprising an analog-to-digital converter (ADC) having a usable input range that is greater than a nominal input range, wherein the offset exists at an input of the ADC. Another embodiment of the invention is directed to a system comprising an ADC having a usable input range that is greater than a nominal input range, wherein an offset exists at an input of the ADC and the offset is corrected using digital correction.
摘要:
Cyclic A/D-conversion of an analog input signal is performed according to a new and inventive recursive algorithm which generates a Gray coded digital output signal. In cyclic A/D-conversion, the output bits are generated cyclically, one by one. According to the inventive Gray coding algorithm, the analog input signal is cyclically subjected to a sample and hold operation, selectively, depending on the previously generated output bit, to a signal inversion, to an amplification by two, and to an addition of a predetermined reference signal. In a cyclic A/D-converter architecture based on the recursive Gray coding algorithm according to the invention, the accumulation of offset errors will generally be very low. Furthermore, the fact that the signal inversion is digitally controlled enables high precision implementations which further improve the performance of the cyclic A/D-converter according to the invention.
摘要:
1,157,641. Selective signalling. MOORE REED (INDUSTRIAL) Ltd. 15 July, 1966 [28 July, 1965], No. 32250/65. Heading G4H. A shaft 64, Fig. 6, position digitizer includes a 10 -3 stage 61 in which brushes 0/9, 1/8, 2/7, 3/6, 4/5 and A, B, C, C o , C e and COM, Fig. 5, are moved over stationary conductive segments 53, 54, 55, and 10 -2 and 10-1 stages 62, 63 in which coded scales (e.g. as in Fig. 7, not shown, or as in Specification 1,135,204, which is referred to) are moved past stationary brushes, the arrangement being such that each stage produces a " choosing signal " which selects which brushes in the next higher stage are to be operative. The lowest denominational stage 61, Fig. 6, includes two brushes A, B, Fig. 5, whose outputs when suitably combined (Fig. 2, not shown) produce inverse signals a, b, Fig. 3a, which are used to energize the C e and C 0 brushes respectively, Fig. 5, so that each numbered brush (e.g. 0/9) produces a signal when in a position corresponding to either of its numbers, the ambiguity being resolved by reference to brush C.
摘要:
Techniques are provided for compacting indirect blocks. For example, an object is represented as a structure including data blocks within which data of the object is stored and indirect blocks including block numbers of where the data blocks are located in storage. Block numbers within a set of indirect blocks are compacted into a compacted indirect block including a base block number, a count of additional block numbers after the base block number in the compacted indirect block, and a pattern of the block numbers in the compacted indirect block. The compacted indirect block is stored into memory for processing access operations to the object. Storing compacted indirect blocks into memory allows for more block numbers to be stored within memory.
摘要:
In described examples, a phase measurement circuit includes a first switch coupled between a power terminal and a phase measurement output, the first switch having a first switch control terminal coupled to an up input. The phase measurement circuit includes a second switch coupled between the phase measurement output, the second switch having a second switch control terminal coupled to a down input. The phase measurement circuit includes a first capacitor coupled between the power terminal and the phase measurement output, a second capacitor coupled between the phase measurement output and a ground terminal, and a charge pump circuit having a first control input, a second control input, and a charge pump output, the first control input coupled to the up input, the second control input coupled to the down input, and the charge pump output coupled to the phase measurement output.
摘要:
Systems and methods for fault-tolerant threshold circuits used in converting an analog input to a single-bit digital output employ N-modular redundancy of either inverting or non-inverting threshold circuits whose inputs are connected to a single input, and apply majority voting of their outputs to provide correction of transient or permanent faults in up to floor[(N−1)/2] of the individual threshold circuits. Using summation to perform analog majority voting averages the N threshold circuit outputs and provides resilience to single-event transients, but may exhibit an output characteristic having intermediate voltage levels. A digital majority voter having N inputs connected to the outputs of N threshold circuits restores well-defined logic levels and clean hysteresis for Schmitt trigger threshold circuits. A single point of failure at the digital majority voter may be eliminated using an analog majority voter to sum the outputs of three or more redundant digital majority voters.