Abstract:
The present invention employs a bottom antiferromagnetic (AFM) layer which can be employed for longitudinally biasing a free layer of a spin valve sensor and in addition pinning the magnetic moment of a pinned layer of the spin valve sensor perpendicular to the ABS. The bottom AFM layer has first and second portions in first and second regions of the read head and a third portion in a sensor region thereof. The magnetic spins of the first and second portions of the bottom AFM layer are directed parallel to and along an air bearing surface of the head while the magnetic spins of the third portion are directed perpendicular to the ABS. This can be accomplished by a unique method wherein after setting magnetic spins of the first and second portions of the AFM layer a current pulse is applied through the spin valve sensor which causes a current pulse field in combination with discrete heating of the spin valve sensor so that the third portion of the AFM layer is set without disturbing the setting of the first and second portions of the bottom AFM layer.
Abstract:
Magneto-Resistive (MR) head read/write channel (400) provides timer (421), detector (433) and amplifier (432) to reduce the amount of time required to transition from read mode to write mode. Controller (410) issues the write command (WGATE) to signal a pending mode change from read to write mode. While read/write channel (400) remains in read mode, timer (421) begins a configurable countdown sequence, which allows Arm Electronics (430), except for a final output stage of amplifier (432), to power up in preparation for write mode. Once timer (421) has reached terminal count, signal (CHWGATE) is de-asserted, which causes write channel (422) to warm up. After warm up, write channel (422) writes serial data (WRITE DATA) to detector (433). Still in read mode, detector (433) detects the presence of WRITE DATA from write channel (422) and asserts signal (AEWGATE). The assertion of signal (AEWGATE) cancels read mode and enables amplifier (432) to source current to MR head (440) in response to WRITE DATA to begin a fully operational write mode.
Abstract:
A spin valve sensor of a read head has a platinum manganese (PtMn) pinning layer that pins a magnetic moment of an antiparallel (AP) pinned layer structure. The pinned layer structure has a first AP pinned layer exchange coupled to the pinning layer so that the magnetic moment of the first AP pinned layer is pinned in a first direction and has a second AP pinned layer that has a magnetic moment pinned in a second direction antiparallel to the first direction. A free layer structure of the spin valve sensor is located asymmetrically between first and second shield layers so that when a sense current is conducted through the sensor a net image current field is executed on the free layer structure by the shield layers. For example, if the second AP pinned layer is thicker than the first AP pinned layer HI=HFC+HD+HIM is exerted on the free layer structure where HI is a sense current field from all conductive layers other than the free layer structure, HFC is a negative ferromagnetic coupling field from the second AP pinned layer, HD is a net demagnetization field from the AP pinned layer structure and HIM is a net image current field from the shield layers.
Abstract:
A property improving method includes first and second steps. In the first step popcorn noise in a read signal of a thin-film magnetic head is measured so as to determine whether the popcorn noise falls within a permissible range. In the second step a current is fed to the recording head of the thin-film magnetic head, the current having a value greater than that of the current fed when a normal writing operation is performed. While the value of the current fed to the recording head is gradually increased in the second step, the first and second steps are alternately repeated until it is determined that the popcorn noise falls within a permissible range in the first step, or the current value reaches a specific upper limit.
Abstract:
A pinned layer structure includes a nickel iron (NiFe) film which lowers the coercivity HC of the pinned layer structure as well as the coercivity HC of a free layer structure within a spin valve sensor, thereby promoting return of a magnetic moment of the pinned layer structure to its original orientation after being rotated therefrom and promoting a freer rotation of the magnetic moment of the free layer structure in response to signal fields from a rotating magnetic disk. In a preferred embodiment the pinned layer structure is an antiparallel (AP) pinned layer structure which has an antiparallel coupling layer located between first and second AP pinned layers. In a first embodiment the first AP pinned layer is composed of a nickel iron (NiFe) film and a cobalt iron (CoFe) film with the nickel iron (NiFe) film located between a pinning layer and the cobalt iron (CoFe) film, and in a second embodiment the first AP pinned layer includes another cobalt iron (CoFe) film which is located between the pinning layer and the nickel iron (NiFe) film. In the preferred embodiment the pinning layer is composed of platinum manganese (PtMn).
Abstract:
A first magnetic layer includes an area which contains an element X (e.g., Cr) and is present in position toward the side of a nonmagnetic intermediate layer from the side near an opposite surface of the first magnetic layer away from an interface between the first magnetic layer and the nonmagnetic intermediate layer, and an area which is partly located in a region from the interface between the first magnetic layer and the nonmagnetic intermediate layer toward the opposite surface of the first magnetic layer and which does not contain the element X. Such an arrangement is able to improve a resistance change rate, to increase a coupling magnetic field based on the RKKY interaction, and to realize satisfactory control of magnetization of a free magnetic layer.
Abstract:
A dual antiparallel (AP) pinned layer spin valve is provided for a read head wherein a sense current field opposes net ferromagnetic and demagnetizing fields from the first and second AP pinned layers on a free layer structure. In one embodiment the first and second AP pinned layers may be asymmetrical on each side of a free layer structure for providing a desired sense current field while in another embodiment one of the pinning layers may be insulative while the other is conductive so that the conductive pinning layer provides the necessary sense current field for counterbalancing the net ferromagnetic coupling and demagnetizing fields.
Abstract:
A stabilized GMR device includes a GMR stack having a first and a second edge. Stabilization means are positioned adjacent to the first and the second edge of the GMR stack for stabilizing the GMR stack. The GMR stack includes a first layer of ferromagnetic material and a second layer of ferromagnetic material. A spacer layer is positioned between the first and the second ferromagnetic layers. A buffer layer is positioned adjacent to the first magnetic layer and a cap layer is positioned adjacent to the second ferromagnetic layer. The stabilization means include a first coupler layer positioned adjacent to the first edge of the GMR stack and a second coupler layer positioned adjacent to the second edge of the GMR stack. The stabilization means also include a first ferromagnetic layer positioned adjacent to the first coupler layer and a second ferromagnetic layer positioned adjacent to the second coupler layer.
Abstract:
A main write pole for a perpendicular recording head for use with magnetic recording media includes a main body portion of a material with a low magnetic moments, a trailing edge of a material having a high magnetic moment and a non-magnetic de-coupling layer therebetween. The strong magnetic recording field generated by the high moment magnetic material permits the use of a magnetic recording media having high anisotropy, thereby reducing super paramagnetic instabilities at high recording densities. Additionally, the high magnetic moment of the trailing edge, combined with the low magnetic moments of the remainder of the write pole, results in a highly localized magnetic recording field, thereby reducing the sensitivity of the recording process to the skew angle. Further, the de-coupling between the low and high magnetic moment portions of the write pole minimize the problem of magnetic remanence.
Abstract:
A circuit to detect pin layer reversal including an input circuit to receive an input signal having a first portion to indicate a pin layer reversal and having a second portion to indicate a servo sync mark, a first servo sync mark detector for detecting a positive servo sync mark from the input signal, a second servo sync mark detector for detecting a negative servo sync mark from the input signal, and a circuit responsive to the positive servo sync mark and the negative servo sync mark to generate a signal to indicate if the servo sync mark has been reversed and to generate a signal to indicate the pin layer reversal.