Abstract:
A magnetic recording system for preventing data loss resulting magnetic oscillator current. The magnetic recording system includes a magnetic write head with a magnetic write pole, a magnetic oscillator near the magnetic write pole, and a write coil for magnetizing the write pole. Circuitry is connected with the magnetic write coil to supply a current to the write coil and connected with the magnetic oscillator to supply a current to the magnetic oscillator. The circuitry is configured to ensure that the current to the magnetic oscillator does not inadvertently magnetize the write pole after the magnetic write pole has demagnetized.
Abstract:
A hard disk drive (HDD) is described which includes a magnetic field-generating device in the vicinity of a load/unload ramp such that the write head moves into a magnetic field generated by the device while the head is being unloaded from disk, whereby the magnetic field pins in a predominant direction the direction of magnetization of a magnetic shield associated with the write head, and away from the direction toward the disk. Recording magnetic field leakage associated with the shield is thereby suppressed and corresponding far track interference is inhibited.
Abstract:
A hard disk drive or other storage device comprises a storage medium, a write head configured to write data to the storage medium, and control circuitry coupled to the write head. The control circuitry comprises degauss circuitry coupled to or otherwise associated with one or more write drivers. The degauss circuitry is configured to generate an asymmetric degauss signal to be applied to the write head. The asymmetric degauss signal has a waveform with upper and lower decay envelopes that are asymmetric about a specified degauss current level, such as a substantially zero current level.
Abstract:
A hard disk drive or other disk-based storage device comprises a storage disk, a write head configured to write data to the disk, and control circuitry coupled to the write head. The control circuitry comprises a write driver and degauss circuitry associated with the write driver. The degauss circuitry is configured to control a degauss signal waveform to be applied to the write head by the write driver, and comprises separate amplitude envelope control mechanisms for steady state and overshoot portions of the degauss signal waveform. The separate amplitude envelope control mechanisms may comprise, for example, separate steady state and overshoot controllers for controlling the amplitude envelope decay rates of the respective steady state and overshoot portions of the degauss signal waveform over the plurality of pulses.
Abstract:
One embodiment of the invention includes a preamplifier system for a magnetic disk-drive. The system includes a current distributor configured to generate a reference current and to decay the reference current from a first magnitude to a second magnitude during a degauss period to degauss a magnetic disk write head. The degauss period defines a transition from a write cycle to a read cycle of the magnetic disk-drive and has a predetermined time duration that is independent of the first magnitude of the reference current during the write cycle. An output driver is configured to provide a write current to the magnetic disk write head having a magnitude with an absolute value that is based on the reference current.
Abstract:
An apparatus and method for demagnetizing a write head of a disc drive. Under control of a clock oscillator, synthetic demagnetizing pulses are generated and applied to a writer-driver bridge. Also under control of the clock oscillator, a write current produced by the writer-driver bridge incorporates the demagnetizing pulses and ramps down to about zero. The train of demagnetizing pulses and the write current ramp down demagnetizes the head, reducing write head magnetic bias that may influence the proximate read head of the disc drive head.
Abstract:
Single write poles tend to large shape anisotropy which results in a very large remnant field when not actually writing. This has now been eliminated by giving the write pole the form of a three layer laminate in which two ferromagnetic layers are separated by a non-magnetic or antiferromagnetic coupling layer. Strong magnetostatic coupling between the outer layers causes their magnetization directions to automatically be antiparallel to one another, unless overcome by the more powerful write field, leaving the structure with a low net magnetic moment. The thickness of the middle layer must be carefully controlled.
Abstract:
A demagnetizer for an inductive load having a driver circuit including at least one transistor and a ramp-down voltage source switchably connected to the driver circuit, so that when the ramp-down voltage source is connected to the transistor, it drives the voltage of the transistor below its threshold voltage.
Abstract:
A write head drive circuit for a magnetic data storage device is configured to drive a write head with a write head degaussing current that is applied at the end of a write cycle. The write head degaussing current is an alternating current waveform with a programmable number of current pulses with decreasing amplitude and a frequency controlled by a CMOS ring oscillator. The CMOS ring oscillator includes switchable feedback paths to control its frequency. A programmable timer terminates the write head degaussing current after an interval of time dependent on signals that indicate the programmable number of current pulses and the frequency of the CMOS oscillator.
Abstract:
Single write poles tend to large shape anisotropy which results in a very large remnant field when not actually writing. This has now been eliminated by giving the write pole the form of a three layer laminate in which two ferromagnetic layers are separated by a non-magnetic or antiferromagnetic coupling layer. Strong magnetostatic coupling between the outer layers causes their magnetization directions to automatically be antiparallel to one another, unless overcome by the more powerful write field, leaving the structure with a low net magnetic moment. The thickness of the middle layer must be carefully controlled.