Abstract:
A method for controlling a gas turbine engine includes: generating model parameter data as a function of prediction error data, which model parameter data includes at least one model parameter that accounts for off-nominal operation of the engine; at least partially compensating an on-board model for the prediction error data using the model parameter data; generating model term data using the on-board model, wherein the on-board model includes at least one model term that accounts for the off-nominal operation of the engine; respectively updating one or more model parameters and one or more model terms of a model-based control algorithm with the model parameter data and model term data; and generating one or more effector signals using the model-based control algorithm.
Abstract:
A wiring system for use in an air conditioning system comprising a printed circuit board having a perimeter and wiring receptacles located proximate the perimeter and wiring connectors. In one aspect, at least some of the wiring receptacles comprise two or more wiring sub-receptacles, and each of the wiring sub-receptacles includes a slotted sub-receptacle connection pattern. Furthermore, the slotted sub-receptacle connection pattern of each of the wiring sub-receptacles is different from every other sub-receptacle connection pattern. Each of the wiring connectors includes a ridged connection pattern that is different from every other ridged connection pattern of the wiring connectors, such that a given wiring connector is receivable within only one of the wiring sub-receptacles. An air conditioning system and a method of manufacturing is also provided.
Abstract:
A system for transporting inventory items includes an inventory holder capable of storing inventory items and a mobile drive unit. The mobile drive unit is capable of moving to a first point with the inventory holder at least one of coupled to and supported by the mobile drive unit. The mobile drive unit is additionally capable of determining a location of the inventory holder and calculating a difference between the location of the inventory holder and the first point. The mobile drive unit is then capable of determining whether the difference is greater than a predetermined tolerance. In response to determining that the difference is greater than the predetermined tolerance, the mobile drive unit is also capable of moving to a second point based on the location of the inventory holder, docking with the inventory holder, and moving the mobile drive unit and the inventory holder to the first point.
Abstract:
An HVAC controller, a method determining a location of a HVAC unit with respect to a site where the HVAC unit is installed and a HVAC system are disclosed herein. In one embodiment, the HVAC controller includes: (1) an interface configured to receive location data indicating a position of said HVAC unit with respect to the earth, (2) a memory coupled to said interface and configured to store said location data and a processor configured to retrieve said location data from said memory, wherein said retrieved location data is employed to determine a location of said HVAC unit with respect to a site where said HVAC unit is installed.
Abstract:
The present invention provides an adaptive process control and profit depiction system which is responsive to both process measurement input signals, economic inputs, and physical environment inputs. The process control system features an interactive optimization modeling system for determining manipulated process variables (also known as setpoints). These manipulated process variables are used to position mechanisms which control attributes of a manufacturing system, such as a valve controlling the temperature of a coolant or a valve controlling the flow rate in a steam line.
Abstract:
For calculating optimum operation parameters of a BTG plant including a plurality of boilers having a linear input/output characteristic between an incoming fuel and steam output and a plurality of turbines having a non-convex input/output characteristic between the incoming steam which is an output of the boiler and power output, a dynamic programming process is performed twice and a linear programming process is performed once with respect to the steam and power to find, as an optimum solution, the power output of the turbines. Finally, an optimum solution is found in which a total fuel cost is minimized.
Abstract:
A video encoder determines scaled transform coefficients, wherein determining the scaled transform coefficients comprises scaling transform coefficients of a block of the video data according to a given quantization step. The video encoder determines scalar quantized coefficients, wherein determining the scalar quantized coefficients comprises applying scalar quantization to the scaled transform coefficients of the block. Additionally, the video encoder applies a neural network that determines a respective set of probabilities for each respective transform coefficient of the block. The respective set of probabilities for the respective transform coefficient includes a respective probability value for each possible adjustment value in a plurality of possible adjustment values. Inputs to the neural network include the scaled transform coefficients and the scalar quantized coefficients. The video encoder determines, based on the set of probabilities for a particular transform coefficient of the block, a quantization level for the particular transform coefficient.
Abstract:
Various embodiments enable a robot, or other autonomous or semi-autonomous device or system, to receive data involving the performance of a task in the physical world. The data can be provided as input to a perception network to infer a set of percepts about the task, which can correspond to relationships between objects observed during the performance. The percepts can be provided as input to a plan generation network, which can infer a set of actions as part of a plan. Each action can correspond to one of the observed relationships. The plan can be reviewed and any corrections made, either manually or through another demonstration of the task. Once the plan is verified as correct, the plan (and any related data) can be provided as input to an execution network that can infer instructions to cause the robot, and/or another robot, to perform the task.
Abstract:
An aeration control system and method for a marine vessel. The system includes a valve configured to be coupled to an aeration conduit of a marine vessel. The valve is configured to be responsive to a valve control signal having a first value so as to be open and to provide air to the aeration conduit, and the valve configured to be responsive to the valve control signal having a second value so as to be closed and not provide air to the aeration conduit. The aeration control system also includes a control device, electrically coupled to the valve, that provides the valve control signal to the valve
Abstract:
Methods and systems are disclosed for determining a plan to optimize key performance indicators (KPIs) of an industrial process. Such a plan is determined based on generating a query for information associated with the KPIs and based on receiving user-provided object information corresponding to the KPIs. The method includes receiving, at a user interface, one or more KPIs associated with an industrial process. The method includes generating, based on the one or more KPIs, at least one query for information associated with the KPI. The method includes receiving, at the user interface, a response to the at least one query. The method includes determining, by an artificial intelligence agent, a plan for optimizing the KPI.