Wavelength scanning apparatus and method of use thereof
    32.
    发明授权
    Wavelength scanning apparatus and method of use thereof 有权
    波长扫描装置及其使用方法

    公开(公告)号:US09568429B1

    公开(公告)日:2017-02-14

    申请号:US14809175

    申请日:2015-07-25

    Abstract: A wavelength scanning apparatus that detects at least four different florescent emission wavelengths simultaneously or nearly simultaneously is described. The wavelength scanning apparatus includes a heating block having at least four sample wells, each sample well configured for receiving a sample, at least four excitation activation apertures, and at least four fluorescence emission discharge apertures. The wavelength scanning apparatus also includes an analysis scanner having at least four light sources, where the at least four light sources excite at least four fluorophores, at least four excitation light filters that filter out light except that of the desired excitation wavelength/s, at least four fluorescence emission light filters that filter out light except that of the desired florescent emission wavelengths, and at least four photodetectors to detect light of the desired florescent emission wavelengths.

    Abstract translation: 描述了同时或几乎同时检测至少四种不同的荧光发射波长的波长扫描装置。 所述波长扫描装置包括具有至少四个样品阱的加热块,每个样品良好地配置用于接收样品,至少四个激发活化孔和至少四个荧光发射排放孔。 所述波长扫描装置还包括具有至少四个光源的分析扫描器,其中所述至少四个光源激发至少四个荧光团,至少四个激发光滤光器,其将除了所需激发波长/ 至少四个荧光发射滤光器,其滤出除所需荧光发射波长以外的光,以及至少四个光电检测器,以检测所需荧光发射波长的光。

    ENHANCEMENT OF VIDEO-RATE FLUORESCENCE IMAGERY COLLECTED IN THE SECOND NEAR-INFRARED OPTICAL WINDOW
    33.
    发明申请
    ENHANCEMENT OF VIDEO-RATE FLUORESCENCE IMAGERY COLLECTED IN THE SECOND NEAR-INFRARED OPTICAL WINDOW 审中-公开
    在第二个近红外光学窗口中收集的视频荧光图像的增强

    公开(公告)号:US20170017069A1

    公开(公告)日:2017-01-19

    申请号:US15209571

    申请日:2016-07-13

    Abstract: System and method configured to operate under conditions when the object being imaged destroys or negates the information which otherwise allows the user to take advantage of optical parallax, configured to elicit luminescence from the same targets in the object as a result of irradiation of these targets with pump light at different, respectively corresponding wavelengths, and acquire optical data from so-illuminated targets through the very same optical path to image the object at different wavelengths. One embodiment enables acquisition, by the same optical detector and from the same object, of imaging data that includes a reflectance image and multiple fluorescence-based images caused by light at different wavelengths, to assess difference in depths of locations of targets within the object.

    Abstract translation: 被配置为在成像对象的条件下操作的系统和方法能够破坏或否定否则允许用户利用光学视差的信息,该信息被配置为通过这些目标的照射从对象中的相同目标引出发光, 以不同的分别对应的波长泵浦光,并且通过相同的光路从所照射的目标获取光学数据,以对不同波长的物体进行成像。 一个实施例使得能够通过相同的光学检测器和相同的对象采集包括反射图像和由不同波长的光引起的多个基于荧光的图像的成像数据,以评估对象内的目标位置的深度差异。

    MEASUREMENT SYSTEM OF REAL-TIME SPATIALLY-RESOLVED SPECTRUM AND TIME-RESOLVED SPECTRUM AND MEASUREMENT MODULE THEREOF
    34.
    发明申请
    MEASUREMENT SYSTEM OF REAL-TIME SPATIALLY-RESOLVED SPECTRUM AND TIME-RESOLVED SPECTRUM AND MEASUREMENT MODULE THEREOF 审中-公开
    实时空间分辨率和时间分辨率的测量系统及其测量模块

    公开(公告)号:US20170016769A1

    公开(公告)日:2017-01-19

    申请号:US14825252

    申请日:2015-08-13

    Abstract: The present invention provides a measurement system of real-time spatially-resolved spectrum and time-resolved spectrum and a measurement module thereof. The measurement system includes an excitation light and a measurement module. The excitation light excites a fluorescent sample and the measurement module receives and analyzes fluorescence emitted by the fluorescent sample. The measurement module includes a single-photon linear scanner and a linear CCD spectrometer. The single-photon linear scanner selectively intercepts a light beam component of a multi-wavelength light beam that has a predetermined wavelength to generate a single-wavelength time-resolved signal, wherein the multi-wavelength light beam is generated by splitting the fluorescence. The linear CCD spectrometer receives the multi-wavelength light beam and generates a spatially-resolved full-spectrum fluorescence signal. With the implementation of the present invention, the spatially-resolved full-spectrum fluorescence signal and the single-wavelength time-resolved signal can be observed at the same time. Thus, the facility of a fluorescence spectrometer is improved.

    Abstract translation: 本发明提供实时空间分辨光谱和时间分辨光谱的测量系统及其测量模块。 测量系统包括激发光和测量模块。 激发光激发荧光样品,测量模块接收和分析由荧光样品发出的荧光。 测量模块包括单光子线性扫描仪和线性CCD光谱仪。 单光子线性扫描器选择性地截取具有预定波长的多波长光束的光束分量以产生单波长时间分辨信号,其中通过分离荧光产生多波长光束。 线性CCD光谱仪接收多波长光束并产生空间分辨全谱荧光信号。 通过本发明的实现,可以同时观察空间分辨全谱荧光信号和单波长时间分辨信号。 因此,提高了荧光光谱仪的设备。

    Three-dimensional hyperspectral imaging systems and methods using a light detection and ranging (LIDAR) focal plane array
    36.
    发明授权
    Three-dimensional hyperspectral imaging systems and methods using a light detection and ranging (LIDAR) focal plane array 有权
    三维高光谱成像系统和使用光检测和测距(LIDAR)焦平面阵列的方法

    公开(公告)号:US09448110B2

    公开(公告)日:2016-09-20

    申请号:US13628126

    申请日:2012-09-27

    Inventor: Chung Ming Wong

    Abstract: A system for three-dimensional hyperspectral imaging includes an illumination source configured to illuminate a target object; a dispersive element configured to spectrally separate light received from the target object into different colors; and a light detection and ranging focal plane array (FPA) configured to receive the light from the dispersive element, configured to acquire spatial information regarding the target object in one dimension in the plane of the FPA, configured to acquire spectral information in a second dimension in the plane of the FPA, wherein the second dimension is perpendicular to the first dimension, and configured to obtain information regarding the distance from the FPA to the target object by obtaining times of flight of at least two wavelengths, thereby imaging the target object in three dimensions and acquiring spectral information on at least one 3D point.

    Abstract translation: 用于三维高光谱成像的系统包括被配置为照亮目标物体的照明源; 分散元件,被配置为将从目标物体接收的光光谱地分离成不同的颜色; 以及光检测和测距焦平面阵列(FPA),其被配置为接收来自所述色散元件的光,被配置为在所述FPA的平面中获取关于所述目标对象的一维的空间信息,所述空间信息被配置为获取第二维度中的光谱信息 在FPA的平面中,其中第二维度垂直于第一维度,并且被配置为通过获得至少两个波长的飞行时间来获得关于从FPA到目标对象的距离的信息,从而对目标对象进行成像 三维并在至少一个3D点上获取光谱信息。

    Smart IV bag with optical IV drug identification tag
    37.
    发明授权
    Smart IV bag with optical IV drug identification tag 有权
    Smart IV包含光学IV药物识别标签

    公开(公告)号:US09370465B2

    公开(公告)日:2016-06-21

    申请号:US14047083

    申请日:2013-10-07

    Inventor: Sean Xiaolu Wang

    Abstract: This invention relates to a smart IV bag with a structurally integrated optical tag for IV drug identification and monitoring. The optical tag comprises a flow cell with a fluid channel in communication with the IV bag to sample a portion of the IV fluid onto an optical surface embedded in the flow cell. The optical surface causes a light beam to interact with the sampled IV fluid to produce a spectroscopic signal. The spectroscopic signal is then analyzed to obtain the content and concentration information of the IV fluid. Unlike traditional IV bag labels, the optical tag provides real-time, in-situ monitoring of IV fluid content and concentration, which greatly reduces the risk of mislabeling induced IV error.

    Abstract translation: 本发明涉及一种具有用于IV药物鉴定和监测的结构集成的光学标签的智能IV袋。 光学标签包括具有与IV袋连通的流体通道的流动池,以将IV流体的一部分采样到嵌入在流动池中的光学表面上。 光学表面导致光束与采样的IV流体相互作用以产生光谱信号。 然后分析光谱信号以获得IV流体的含量和浓度信息。 与传统IV袋标签不同,光学标签提供IV流体含量和浓度的实时,原位监测,大大降低了错误标记引起的IV误差的风险。

    SPECTROSCOPE AND MICROSPECTROSCOPIC SYSTEM
    38.
    发明申请
    SPECTROSCOPE AND MICROSPECTROSCOPIC SYSTEM 审中-公开
    光谱和微观系统

    公开(公告)号:US20160146669A1

    公开(公告)日:2016-05-26

    申请号:US14983067

    申请日:2015-12-29

    Abstract: A spectroscope used for a microspectroscopic system includes: a collimating optical system that causes signal light to be substantially collimated light; spectroscopic optical systems and each of which includes at least one of each of spectral elements and in which a wavelength band for spectral separation varies depending on an incident angle of the signal light; at least one of each of optical receivers that detect the signal light spectrally separated by the spectroscopic optical systems; a mechanism that varies the incident angles of the signal light on the spectral elements; and a controller unit that determines the incident angles of the signal light on the spectral elements in accordance with the wavelength band for spectrally separating the signal light and controls the mechanism so as to attain the incident angles.

    Abstract translation: 用于微观光谱系统的分光镜包括:准直光学系统,其使信号光基本上准直的光; 分光光学系统,并且每个光谱系统包括每个光谱元素中的至少一个,并且其中用于光谱分离的波长带根据信号光的入射角度而变化; 检测由分光光学系统光谱分离的信号光的每个光接收器中的至少一个; 改变光谱元件上的信号光的入射角的机构; 以及控制器单元,其根据用于频谱分离信号光的波长带来确定信号光在光谱元件上的入射角度,并且控制该机构以便获得入射角。

    FLUORESCENCE DETECTION DEVICE, SYSTEM AND PROCESS
    39.
    发明申请
    FLUORESCENCE DETECTION DEVICE, SYSTEM AND PROCESS 审中-公开
    荧光检测装置,系统和过程

    公开(公告)号:US20160123884A1

    公开(公告)日:2016-05-05

    申请号:US14897726

    申请日:2014-06-11

    Applicant: CIRTEMO, LLD

    Inventor: Ryan J. PRIORE

    Abstract: An optical fluorescence analysis system (100), optical device, and optical analysis process are disclosed. The optical analysis system includes one or more optical filter mechanisms (110) disposed to receive and/or modulate light from a light source (108) and a detector mechanism (112) configured for operative communication with the one or more optical filter mechanisms, the operative communication permitting measurement of properties of filtered light, filtered by the one or more optical filter mechanisms from the light received and/or modulated. The one or more optical filter mechanisms are configured so that the magnitude of the properties measured by the detector mechanism is proportional to information carried by the filtered light.

    Abstract translation: 公开了一种光学荧光分析系统(100),光学装置和光学分析方法。 光学分析系统包括设置成接收和/或调制来自光源(108)和检测器机构(112)的光的一个或多个滤光器机构(110),被配置为与一个或多个滤光器机构的操作性通信, 操作通信允许测量经过一个或多个光学滤光器机构的滤光光的特性,从接收和/或调制的光中滤出。 一个或多个光学滤光器机构被配置成使得由检测器机构测量的特性的大小与滤波光所携带的信息成正比。

Patent Agency Ranking