Abstract:
Multivolume liquid pipettes with nested plunger and vacuum chamber configurations and methods of using such pipettes are disclosed herein. These pipettes typically include a body and a fluid displacement assembly with a small plunger element slideably received within a larger plunger element, each movable within a vacuum chamber for the precise and accurate control of the displacement of fluid, such as air. In turn, this allows for a single device to aspirate and dispense a broad range of liquids in a dynamic, accurate, and precise manner. In addition, the devices disclosed herein may also include a multi-tiered spring-loaded ejection mechanism to allow the user to use and eject pipette tips of different sizes.
Abstract:
An apparatus and method for measuring fluorescence of a sample is described. An apparatus includes three or more fluorescence channels passing through a sample site. The three or more fluorescence channels allow for exposing a sample at the sample site to light from three or more light sources, which results in fluorescence measurements based on emissions from the sample in response to the three or more light sources.
Abstract:
Broad volumetric range pipettes with multi-tiered pipette tip holder and ejection assemblies and methods of using such pipettes are disclosed herein. These pipettes typically include a concentric cylinder arrangement with each outer cylinder configured for contacting and dislodging a pipette tip attached to the tip holder portion of the immediately adjacent inner cylinder. In this manner, different sized pipette tips can be used on a single device. In addition, a locking mechanism is described for locking the large tip holder into a downward position to minimize the extension of the small tip holder and thereby enabling attachment of large, filtered pipette tips and reducing/eliminating the risk that the liquid being transferred will contaminate the pipetting device.
Abstract:
Multivolume liquid pipettes with nested plunger and vacuum chamber configurations and methods of using such pipettes are disclosed herein. These pipettes typically include a body and a fluid displacement assembly with a small plunger element slideably received within a larger plunger element, each movable within a vacuum chamber for the precise and accurate control of the displacement of fluid, such as air. In turn, this allows for a single device to aspirate and dispense a broad range of liquids in a dynamic, accurate, and precise manner. In addition, the devices disclosed herein may also include a multi-tiered spring-loaded ejection mechanism to allow the user to use and eject pipette tips of different sizes.
Abstract:
Multivolume liquid pipettes with nested plunger and vacuum chamber configurations and methods of using such pipettes are disclosed herein. These pipettes typically include a body and a fluid displacement assembly with a small plunger element slideably received within a larger plunger element, each movable within a vacuum chamber for the precise and accurate control of the displacement of fluid, such as air. In turn, this allows for a single device to aspirate and dispense a broad range of liquids in a dynamic, accurate, and precise manner. In addition, the devices disclosed herein may also include a multi-tiered spring-loaded ejection mechanism to allow the user to use and eject pipette tips of different sizes.
Abstract:
Multivolume liquid pipettes with nested plunger and vacuum chamber configurations and methods of using such pipettes are disclosed herein. These pipettes typically include a body and a fluid displacement assembly with a small plunger element slideably received within a larger plunger element, each movable within a vacuum chamber for the precise and accurate control of the displacement of fluid, such as air. In turn, this allows for a single device to aspirate and dispense a broad range of liquids in a dynamic, accurate, and precise manner. In addition, the devices disclosed herein may also include a multi-tiered spring-loaded ejection mechanism to allow the user to use and eject pipette tips of different sizes.
Abstract:
An improved apparatus and method for making optical measurements of a sample is described. In one embodiment, the apparatus is a microvolume sampling mechanism comprised of two opposing optical measurement surfaces. A sample is held by surface tension between the two opposing optical measurement surfaces. Light is transmitted through the sample and received by optical fibers, which measure the absorbance of the sample. This absorbance can be used to determine the concentration of the sample.
Abstract:
An improved apparatus and method for making optical measurements of a sample is described. In one embodiment, the apparatus is a microvolume sampling mechanism comprised of two opposing optical measurement surfaces. A sample is held by surface tension between the two opposing optical measurement surfaces. Light is transmitted through the sample and received by optical fibers, which measure the absorbance of the sample. This absorbance can be used to determine the concentration of the sample.