摘要:
Supported zeolite Y membranes exhibiting exceptionally high CO2 selectivities when used in CO2/N2 gas separations are produced by a seeding/secondary (hypothermal) growth approach in which a structure directing agent such as tetramethylammonium hydroxide is included in the aqueous crystal-growing composition used for membrane formation.
摘要:
The present invention discloses microporous aluminophosphate (AlPO4) molecular sieve membranes and methods for making and using the same. The microporous AlPO4 molecular sieve membranes, particularly small pore microporous AlPO-14 and AlPO-18 molecular sieve membranes, are prepared by three different methods, including in-situ crystallization of a layer of AlPO4 molecular sieve crystals on a porous membrane support, coating a layer of polymer-bound AlPO4 molecular sieve crystals on a porous membrane support, and a seeding method by in-situ crystallization of a continuous second layer of AlPO4 molecular sieve crystals on a seed layer of AlPO4 molecular sieve crystals supported on a porous membrane support. The microporous AlPO4 molecular sieve membranes have superior thermal and chemical stability, good erosion resistance, high CO2 plasticization resistance, and significantly improved selectivity over polymer membranes for gas and liquid separations, including carbon dioxide/methane (CO2/CH4), carbon dioxide/nitrogen (CO2/N2), and hydrogen/methane (H2/CH4) separations.
摘要:
According to the present invention, an aromatic polysulfone resin is offered which is suitable as film material, especially in porous membranes. The aromatic polysulfone resin of the present invention has a reduced viscosity of 0.55-0.65 dL/g, and preferably 0.58-0.62 dL/g, number average molecular weight (Mn) of 22000 or more, and preferably 23500 or more, and a value of the ratio of weight average molecular weight (Mw) relative to number average molecular weight (Mn) of 2.54 or less, and preferably 2.50 or less.
摘要:
The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.
摘要:
A method is provided for making a porous inorganic membrane by using a mixture of an inorganic material, organic polymer particles and a solvent to form a slurry, the particles being non-spherical, distributing the slurry onto a surface, drying the slurry to remove the solvent and firing the dried slurry to produce the porous inorganic membrane. Examples of organic polymer particles include particles of acrylic. A substrate with a porous inorganic membrane disposed on the substrate is also provided, the inorganic membrane having an average thickness of from about 0.5 micron to about 30 microns, a porosity of from about 30% to about 65%, a median pore size (d50) of from about 0.01 micron to about 1 micron, and a value of (d90−d10)/d50 less than about 2, as measured by mercury porosimetry. An example of a substrate includes an inorganic porous support.
摘要:
The present invention discloses microporous aluminophosphate (AlPO4) molecular sieve membranes and methods for making and using the same. The microporous AlPO4 molecular sieve membranes, particularly small pore microporous AlPO-14 and AlPO-18 molecular sieve membranes, are prepared by three different methods, including in-situ crystallization of a layer of AlPO4 molecular sieve crystals on a porous membrane support, coating a layer of polymer-bound AlPO4 molecular sieve crystals on a porous membrane support, and a seeding method by in-situ crystallization of a continuous second layer of AlPO4 molecular sieve crystals on a seed layer of AlPO4 molecular sieve crystals supported on a porous membrane support. The microporous AlPO4 molecular sieve membranes have superior thermal and chemical stability, good erosion resistance, high CO2 plasticization resistance, and significantly improved selectivity over polymer membranes for gas and liquid separations, including carbon dioxide/methane (CO2/CH4), carbon dioxide/nitrogen (CO2/N2), and hydrogen/methane (H2/CH4) separations.
摘要:
The invention relates to a method for removing a process solvent (P-sol) from a polymer extrudate, especially in connection with a process for producing a microporous membrane. The method involves contacting the extrudate with chlorinated hydrocarbon (CHC) and hydrofluoroether (HFE) in a first stage; contacting the extrudate from the first stage with HFE in a second stage; combining the first and second waste streams and then separating the P-sol from the combined streams to make an HFE-CHC stream; cooling the HFE-CHC stream to make an HFE-rich phase and a CHC-rich phase; and conducting the CHC-rich phase and/or the HFE-rich phase to step (A).
摘要:
The present invention aims at providing a process for producing composite semipermeable membrane excellent in water permeability and salt-blocking rate, and including an extremely small amount of unreacted components in the membrane, and at providing a composite semipermeable membrane obtained by the production process. The present invention relates to a process for producing a composite semipermeable membrane, comprising the steps of: producing an unwashed composite semipermeable membrane by forming a skin layer including a polyamide resin obtained by reaction between a polyfunctional amine component and a polyfunctional acid halide component on the surface of a porous support; and pretreating the unwashed composite semipermeable membrane by contact to a solution containing a water-soluble alcohol, and subsequently performing a membrane washing treatment by contact to pure water or ion exchange water.
摘要:
A hydrophilic semipermeable hollow-fibre membrane for blood treatment, with an integrally asymmetric structure based on a synthetic polymer. The hollow-fibre membrane possesses on its inner surface a separating layer and an adjoining open-pored supporting layer, and has an ultrafiltration rate in albumin solution of 5 to 25 ml/(h·m2·mmHg). The hollow-fibre membrane is free from pore-stabilising additives and has a maximum sieving coefficient for albumin of 0.005 and a sieving coefficient for cytochrome c that satisfies the equation SCCC≧5·10−5·UFRAlb3−0.004·UFRAlb2+1.081·UFRAlb−0.25 A method for producing such membranes by a coagulation process induced by a non-solvent, in which a spinning solution comprising a synthetic first polymer and possibly a hydrophilic second polymer is extruded through the annular slit of a hollow-fibre die to give a hollow fibre, and a coagulation medium that initiates coagulation in the interior of the hollow fibre is simultaneously extruded through the central opening of the hollow-fibre die, the coagulation medium initiating coagulation in the interior of the hollow fibre for formation of a separating layer on the inner surface of the hollow fibre and formation of the membrane structure, the method being characterised in that the interior filler contains a polyelectrolyte with negative fixed charges.