Abstract:
In one aspect, the invention relates to a probe. The probe includes a sheath, a flexible, bi-directionally rotatable, optical subsystem positioned within the sheath, the optical subsystem comprising a transmission fiber, the optical subsystem capable of transmitting and collecting light of a predetermined range of wavelengths along a first beam having a predetermined beam size. The probe also includes an ultrasound subsystem, the ultrasound subsystem positioned within the sheath and adapted to propagate energy of a predetermined range of frequencies along a second beam having a second predetermined beam size, wherein a portion of the first and second beams overlap a region during a scan.
Abstract:
In part, the invention relates to catheters, methods, and blood clearing technologies suitable for use in an optical coherence tomography system. The optical coherence tomography system includes a control system, a probe including a catheter defining a lumen and a rotatable optical fiber located within the lumen, a fluid cartridge holder in communication with the lumen of the probe, a pump to move fluid from the fluid cartridge to the lumen of the probe; and a motor configured to rotate and pull the optical fiber through the lumen of a blood vessel. The pump and the motor are controlled by the control system. The catheter can include a wall that bounds the lumen of the probe, which defines a flush port and includes a valve in fluid communication with the flush port, the valve configured to permit fluid from the lumen to pass through the wall.
Abstract:
In one aspect, the invention relates to a probe. The probe includes a sheath, a flexible, bi-directionally rotatable, optical subsystem positioned within the sheath, the optical subsystem comprising a transmission fiber, the optical subsystem capable of transmitting and collecting light of a predetermined range of wavelengths along a first beam having a predetermined beam size. The probe also includes an ultrasound subsystem, the ultrasound subsystem positioned within the sheath and adapted to propagate energy of a predetermined range of frequencies along a second beam having a second predetermined beam size, wherein a portion of the first and second beams overlap a region during a scan.
Abstract:
In one aspect, the invention relates to a computer-implemented method of triggering optical coherence tomography data collection. The method includes collecting optical coherence tomography data with respect to a vessel using an optical coherence tomography probe disposed in the vessel; determining a clearing radius and a quality value for each frame of optical coherence tomography data collected for the vessel using a computer; determining if a blood clearing state has occurred using at least one clearing radius and at least one quality value; and generating a trigger signal in response to the blood clearing state.
Abstract:
In part, the invention relates to an optical coherence tomography system that includes one or more phased-locked loop circuits. In one embodiment, the phased-locked loop circuit includes a phase detector, a loop filter, and a voltage controlled oscillator wherein the phased-locked loop circuit is configured to generate a sample clock. The optical coherence tomography system can include an analog to digital converter having a sample clock input, an interferometric signal input, and a sample data output, the analog to digital converter configured to receive the sample clock and sample OCT data in response thereto. In one embodiment, the phased-locked loop circuit is configured to lock on a first signal in less than or equal to about 1 microseconds.
Abstract:
In one embodiment, the invention relates to an apparatus for increasing the repetition rate in a light source. The apparatus includes a first optical coupler comprising a first arm, a second arm and a third arm; a first mirror in optical communication with the second arm of the first optical coupler; and a first optical delay line having a first end in optical communication with the third arm of the first optical coupler and a second end in optical communication with a second mirror, wherein light entering the first arm of the first optical coupler leaves the first arm of the first optical coupler either delayed by an amount (τ) or substantially undelayed.
Abstract:
In one embodiment, the invention relates to systems, methods and devices for improving the operation of an electromagnetic radiation source or component thereof. In one embodiment, the source is a laser source. A Fourier domain mode locked laser can be used in various embodiments. The sources described herein can be used in an optical coherence tomography (OCT) system such as a frequency domain OCT system. In one embodiment, laser coherence length is increased by compensating for dispersion. A frequency shifter can also be used in one embodiment to compensate for a tunable filter induced Doppler shift.
Abstract:
In at least one embodiment of the wavelength-tunable light source, it comprises an output source, which is capable in operation of generating electromagnetic radiation. Furthermore, the light source has a wavelength-selective first filter element, which is situated downstream from the output source. Moreover, the light source contains a first amplifier medium, which is situated downstream from the first filter element and is capable of at least partial amplification of the radiation emitted by the output source. The light source further comprises at least one wavelength-selective second filter element, which is situated downstream from the first amplifier medium, the second filter element having an optical spacing to the first filter element. The first filter element and the at least one second filter element are tunable via a control unit, which the light source has.
Abstract:
In one embodiment of the invention, a semiconductor optical amplifier (SOA) in a laser ring is chosen to provide low polarization-dependent gain (PDG) and a booster semiconductor optical amplifier, outside of the ring, is chosen to provide high polarization-dependent gain. The use of a semiconductor optical amplifier with low polarization-dependent gain nearly eliminates variations in the polarization state of the light at the output of the laser, but does not eliminate the intra-sweep variations in the polarization state at the output of the laser, which can degrade the performance of the SS-OCT system.
Abstract:
In one aspect, the invention relates to an imaging probe. The imaging probe includes an elongate body having a proximal end and distal end, the elongate body adapted to enclose a portion of a slidable optical fiber, the optical fiber having a longitudinal axis; and a first optical assembly attached to a distal end of the fiber. The first optical assembly includes a beam director adapted to direct light emitted from the fiber to a plane at a predetermined angle to the longitudinal axis, a linear actuator disposed at the proximal portion of the elongated body, the actuator adapted to affect relative linear motion between the elongate body and the optical fiber; and a second optical assembly located at the distal portion of the elongate body and attached thereto, the second optical assembly comprising a reflector in optical communication with the first optical assembly, the reflector adapted to direct the light to a position distal to the elongate body.