Abstract:
Embodiments of the invention include polymers comprising a regioregular conjugated main chain section having an enantiopure or enantioenriched chiral side chain, as well as methods and materials for producing such polymers. Illustrative methods include regioselectively preparing a monomer that includes an enantiopure or enantioenriched chiral side group, and then reacting these monomers to produce a polymer that comprises a regioregular conjugated main chain section having an enantiopure or enantioenriched chiral side chains. In illustrative embodiments of the invention, the regioregular conjugated main chain section can contain a repeat unit that includes a dithiophene and a pyridine.
Abstract:
Narrow bandgap n-type small molecules are attracting attention in the near-infrared organic optoelectronics field, due to their easy tunable energy band with a molecular design flexibility. However, only a few reports demonstrate narrow bandgap non-fullerene acceptors (NFAs) that perform well in organic solar cells (OSCs), and the corresponding benefits of NFA photodiodes have not been well investigated in organic photodetectors (OPDs). Here, the ultra-narrow bandgap NFAs CO1-4F, CO1-4Cl and o-IO1 were designed and synthesized for the achieved efficient near-infrared organic photodiodes such as solar cells and photodetectors. Designing an asymmetrical CO1-4F by introducing two different π-bridges including alkylthienyl and alkoxythienyl units ultimately provides an asymmetric A-D′-D-D″-A molecular configuration. This enables a delicate modulation in energy band structure as well as maintains an intense intramolecular charge transfer characteristic of the excited state.
Abstract:
Light harvesting luminescent multichromophores that are configured upon excitation to transfer energy to, and amplify the emission from, an acceptor signaling chromophore in energy-receiving proximity therewith are provided. Also provided are compositions for labelling a target. The labelling composition may include a donor light harvesting multichromophore and an acceptor signaling chromophore in energy-receiving proximity to the donor light harvesting multichromophore. Also provided is an aqueous composition for labelling a target, including: a donor light harvesting multichromophore; an acceptor signaling chromophore in energy-receiving proximity therewith; and a sensor biomolecule. Methods for using the subject compositions are also provided.
Abstract:
Disclosed are diboronic acid compounds and diboronic acid compound-based sensors for glucose detection, as well as methods for glucose testing in a sample. The diboronic acid compounds allow for selective detection of glucose in the presence of interference sugars, long-term stability, and ease of preparation. Sensors containing the disclosed diboronic acid compounds allow for selective detection of glucose with improved stability at a low cost.
Abstract:
Organic devices comprising an organic semiconducting acceptor motif coupled to a donor motif. Examples include IOTIC-2F, ITOTIC-2F, COTIC-4F, and SiOTIC-4F as acceptor materials. The acceptor materials have narrow bandgap (1.1 eV-1.3 eV), strong near-IR absorption and high solar cell EQE in near infrared (IR) region. The acceptor materials may also be used as the absorbing/light sensitive region in an IR photodetector.
Abstract:
Light harvesting luminescent multichromophores that are configured upon excitation to transfer energy to, and amplify the emission from, an acceptor signaling chromophore in energy-receiving proximity therewith are provided. Also provided are compositions for labelling a target. The labelling composition may include a donor light harvesting multichromophore and an acceptor signaling chromophore in energy-receiving proximity to the donor light harvesting multichromophore. Also provided is an aqueous composition for labelling a target, including: a donor light harvesting multichromophore; an acceptor signaling chromophore in energy-receiving proximity therewith; and a sensor biomolecule. Methods for using the subject compositions are also provided.
Abstract:
Methods compositions and articles of manufacture for assaying a sample for a target polynucleotide are provided. A sample suspected of containing the target polynucleotide is contacted with a polycationic multichromophore and a sensor polynucleotide complementary to the target polynucleotide. The sensor polynucleotide comprises a signaling chromophore to receive energy from the excited multichromophore and increase emission in the presence of the target polynucleotide. The methods can be used in multiplex form. Kits comprising reagents for performing such methods are also provided.
Abstract:
Synthesis of lyotropic semiconducting polymers having novel side chains enabling control over crystalline fraction, crystalline orientation, and the unit cell (specifically the π-stacking distance). Moving the branch point in the side chain further from the conjugated backbone not only retains the lyotropic liquid crystalline behavior as observed by UV-vis and POM, but also achieves reduced π-stacking distance. This results in higher charge carrier mobility, reaching (in one or more examples) a mobility of at least 0.41 cm2V−1s−1 when the polymers were non-aligned.
Abstract:
Organic devices comprising an organic semiconducting acceptor motif coupled to a donor motif. Examples include IOTIC-2F, ITOTIC-2F, COTIC-4F, and SiOTIC-4F as acceptor materials. The acceptor materials have narrow bandgap (1.1 eV-1.3 eV), strong near-IR absorption and high solar cell EQE in near infrared (IR) region. The acceptor materials may also be used as the absorbing/light sensitive region in an IR photodetector.
Abstract:
Design of side chains yielding highly amphiphilic conjugated polymers is proven to be an effective and general method to access lyotropic liquid crystalline mesophases, allowing greater control over crystalline morphology and improving transistor performance. The general strategy enables variations in structure and interactions that impact alignment and use of liquid crystalline alignment methods. Specifically, solvent-polymer interactions are harnessed to facilitate the formation of high quality polymer crystals in solution. Crystallinity developed in solution is then transferred to the solid state, and thin films of donor-acceptor copolymers cast from lyotropic solutions exhibit improved crystalline order in both the alkyl and π-stacking directions. Due to this improved crystallinity, transistors with active layers cast from lyotropic solutions exhibit a significant improvement in carrier mobility compared to those cast from isotropic solution. One or more embodiments of the present invention achieve a maximum carrier mobility of 0.61 cm2V−1s−1.