Abstract:
Narrow bandgap n-type small molecules are attracting attention in the near-infrared organic optoelectronics field, due to their easy tunable energy band with a molecular design flexibility. However, only a few reports demonstrate narrow bandgap non-fullerene acceptors (NFAs) that perform well in organic solar cells (OSCs), and the corresponding benefits of NFA photodiodes have not been well investigated in organic photodetectors (OPDs). Here, the ultra-narrow bandgap NFAs CO1-4F, CO1-4Cl and o-IO1 were designed and synthesized for the achieved efficient near-infrared organic photodiodes such as solar cells and photodetectors. Designing an asymmetrical CO1-4F by introducing two different π-bridges including alkylthienyl and alkoxythienyl units ultimately provides an asymmetric A-D′-D-D″-A molecular configuration. This enables a delicate modulation in energy band structure as well as maintains an intense intramolecular charge transfer characteristic of the excited state.
Abstract:
An optoelectronic device comprising an active layer sandwiched between a first electrode and a second electrode. The active layer comprises a material of the formula AaBbMmXx, wherein A represents a monovalent inorganic cation, a monovalent organic cation, or mixture of different monovalent organic or inorganic cations; B represents a divalent inorganic cation, a divalent organic cation, or mixture of different divalent organic or inorganic cations; M represents Bi3+ or Sb3+; X represents a monovalent halide anion, or mixture of different monovalent halide anions; and a, b represent 0 or any positive numbers, m, x represent any positive numbers, and a+2b+3m=x.
Abstract:
Narrow bandgap n-type small molecules are attracting attention in the near-infrared organic optoelectronics field, due to their easy tunable energy band with a molecular design flexibility. However, only a few reports demonstrate narrow bandgap non-fullerene acceptors (NFAs) that perform well in organic solar cells (OSCs), and the corresponding benefits of NFA photodiodes have not been well investigated in organic photodetectors (OPDs). Here, the ultra-narrow bandgap NFAs CO1-4F, CO1-4Cl and o-IO1 were designed and synthesized for the achieved efficient near-infrared organic photodiodes such as solar cells and photodetectors. Designing an asymmetrical CO1-4F by introducing two different π-bridges including alkylthienyl and alkoxythienyl units ultimately provides an asymmetric A-D′-D-D″-A molecular configuration. This enables a delicate modulation in energy band structure as well as maintains an intense intramolecular charge transfer characteristic of the excited state.
Abstract:
Triazabicylodecene can effectively n-dope a variety of organic semiconductors, including PCBM, thus increasing in-plane conductivities. We synthesized a series of TBD-based n-dopants via an N-alkylation reaction and studied the effect of various alkyl chains on the physical and device properties of the dopants. Combining two TBD moieties on a long alky chain gave a solid dopant, 2TBD-C10, with high thermal stability above 250° C. PCBM films doped by 2TBD-C10 were the most tolerant to thermal annealing and reached in-plane conductivities of 6.5×10−2 S/cm. Furthermore, incorporating 2TBD-C10 doped PCBM as the electron transport layer (ETL) in methylammonium lead triiodide (MAPbI3) based photovoltaics led to a 23% increase in performance, from 11.8% to 14.5% PCE.
Abstract:
Sulfur-fused perylene diimides (PDIs) having the formula 2PDI-nS, wherein n is an integer. Such sulfur-fused PDIs (e.g., 2PDI-2S, 2PDI-3S, and 2PDI-4S) are incorporated as electron acceptors in an active region of a bulk heterojunction solar cell and/or as an electron transport layer. Example solar cells exhibit a power conversion efficiency above 5% and a fill factor above 70% (a record high for non-fullerene bulk heterojunction solar cell devices) when 2PDI-nS is used as the electron acceptor. In addition, the solar cells exhibit low open circuit voltage (Voc) loss.
Abstract:
A twisted but conjugated building block for low bandgap conjugated polymers. An organic device comprising a (E)-8,8′-biindeno[2,1-b]thiophenylidene (tBTP) based polymer.
Abstract:
Ultra-narrow bandgap Non Fullerene Acceptors (NFAs) comprising an A-D-A′-D-A structure or an A-D-A′-D′-A′-D-A structure were designed, synthesized, and characterized (where A, A′ are organic acceptor moieties and D and D′ are organic donor moieties). Exemplary NFA materials have narrow bandgap (0.86 eV-0.99 eV). Photovoltaic devices and Near Infrared photodetector devices based on these compositions above were synthesized with controlled amounts of solvents and additives. A photodetector having a specific detectivity of 2.41×1012 Jones (D*) at a wavelength of 1040 nm was achieved.
Abstract:
Triazabicylodecene can effectively n-dope a variety of organic semiconductors, including PCBM, thus increasing in-plane conductivities. We synthesized a series of TBD-based n-dopants via an N-alkylation reaction and studied the effect of various alkyl chains on the physical and device properties of the dopants. Combining two TBD moieties on a long alky chain gave a solid dopant, 2TBD-C10, with high thermal stability above 250° C. PCBM films doped by 2TBD-C10 were the most tolerant to thermal annealing and reached in-plane conductivities of 6.5×10−2 S/cm. Furthermore, incorporating 2TBD-C10 doped PCBM as the electron transport layer (ETL) in methylammonium lead triiodide (MAPbI3) based photovoltaics led to a 23% increase in performance, from 11.8% to 14.5% PCE.
Abstract:
Sulfur-fused perylene diimides (PDIs) having the formula 2PDI-nS, wherein n is an integer. Such sulfur-fused PDIs (e.g., 2PDI-2S, 2PDI-3S, and 2PDI-4S) are incorporated as electron acceptors in an active region of a bulk heterojunction solar cell and/or as an electron transport layer. Example solar cells exhibit a power conversion efficiency above 5% and a fill factor above 70% (a record high for non-fullerene bulk heterojunction solar cell devices) when 2PDI-nS is used as the electron acceptor. In addition, the solar cells exhibit low open circuit voltage (Voc) loss.
Abstract:
The present disclosure describes additives that attenuate a specific transport channel in ambipolar semiconductors to achieve unipolar characteristics. Carrier selective traps are included in the ambipolar semiconductors and are chosen on the basis of energetic preferences for holes or electrons and the relative positions of the molecular orbital energies of host polymer and the dopants. In one embodiment, a composition of matter useful as a current transport region in an organic semiconductor device comprises a semiconducting polymer; and means for accepting holes (e.g., a hole trapping compound) injected into the current transport region so as to impede conduction of the holes in the semiconducting polymer. This simple solution-processable method can improve the on and off current ratios (ION/IOFF) of OFETs by up to three orders of magnitude. Moreover, the treatment yields tailored blends that can be used to fabricate complementary inverters with excellent gain and low-power characteristics.