Abstract:
An electrochromic compound, represented by the following general formula (I); where X1 to X4 are each a substituent represented by the following general formula (II), an alkyl group that may contain a functional group, an aromatic hydrocarbon group that may contain a functional group, or a hydrogen atom, and at least two selected from X1 to X4 are the substituents represented by the general formula (II); where R1 to R8 are each independently a hydrogen atom, or a monovalent group that may contain a substituent; B is a substituted or unsubstituted monovalent group that may contain a functional group; A− is a monovalent anion; and m is any of 0 to 3, and R1 to R8, B, and m may each independently be different when a plurality of the substituents represented by the general formula (II) are present.
Abstract:
A method of manufacturing a base body having a microscopic hole, includes: forming at least one of a first modified region and a second modified region by scanning inside of a base body with a focal point of a first laser light having a pulse duration on order of picoseconds or less; forming a periodic modified group formed of a plurality of third modified regions and fourth modified regions by scanning an inside of the base body with a focal point of a second laser light having a pulse duration on order of picoseconds or less; obtaining the base body which is formed so that the first modified region and the second modified region overlap or come into contact with the modified group; and forming a microscopic hole by removing the first modified region and the third modified regions by etching.
Abstract:
A leaving substituent-containing compound including a partial structure represented by the following General Formula (I): where a pair of X1 and X2 or a pair of Y1 and Y2 each represent a hydrogen atom; the other pair each represent a group selected from the group consisting of a halogen atom and a substituted or unsubstituted acyloxy group having one or more carbon atoms; a pair of the acyloxy groups represented by the pair of X1 and X2 or the pair of Y1 and Y2 may be identical or different, or may be bonded together to form a ring; R1 to R4 each represent a hydrogen atom or a substituent; and Q1 and Q2 each represent a hydrogen atom, a halogen atom or a monovalent organic group, and may be bonded together to form a ring.
Abstract:
An ink containing an organic semiconductive material precursor containing a dithienobenzodithiophene derivative of the following formula: X and Y are groups capable of bonding together upon application of an external stimulus to form a compound X-Y that is capable of eliminating from the dithienobenzodithiophene derivative; R1 and R2 are each independently a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group; and R3 to R10 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkylthio group, or a substituted or unsubstituted aryl group.
Abstract translation:包含含有下式的二噻吩并苯并二噻吩衍生物的有机半导体材料前体的油墨:X和Y是在施加外部刺激时能够结合在一起形成能够从二噻吩并苯并噻吩衍生物中除去的化合物X-Y的基团; R 1和R 2各自独立地为取代或未取代的烷基,或取代或未取代的芳基; R 3〜R 10各自独立地为氢原子,取代或未取代的烷基,取代或未取代的烷氧基,取代或未取代的烷硫基,或取代或未取代的芳基。
Abstract:
A laminated coil includes a plurality of circular conductive plates in the form of a flat plate, each of the circular conductive plates being laminated via an insulating material in an axis direction. The plurality of circular conductive plates each include a plurality of concentric circular arc parts having different inner diameter and outer diameter from each other, and a connection part interconnecting the plurality of circular arc parts. The plurality of circular conductive plates are arranged such that the connection parts thereof face each other and the circular arc parts thereof are juxtaposed to each other in a radial direction.
Abstract:
A resist composition having a resin having a structural unit represented by the formula (I), a resin being insoluble or poorly soluble in alkali aqueous solution, but becoming soluble in an alkali aqueous solution by the action of an acid and not including the structural unit represented by the formula (I), and an acid generator represented by the formula (II), wherein R1, A1, A13, A14, X12, R23, R24, R25, X21 and Z1+ are defined in the specification.
Abstract:
A surface nanostructure forming method includes: preparing a substrate having an appropriate processing value; a first process of irradiating a part which is close to a surface of the substrate with laser light having a pulse duration of picosecond order or shorter at an irradiation intensity being close to the appropriate processing value of the substrate, or greater than or equal to the appropriate processing value and less than or equal to an ablation threshold and forming periodic nanostructures in which first modified portions and second modified portions are periodically arranged in a self-assembled manner at a focus at which the laser light is concentrated and in a region being close to the focus; and a second process of performing an etching treatment on the surface of the substrate having the periodic nanostructures formed thereon to form an uneven structure having the first modified portions as valleys.
Abstract:
A resist composition contains a resin having a structural unit represented by the formula (aa) and a structural unit represented by the formula (ab); and an acid generator, wherein Raa1 represents a hydrogen atom and a methyl group; Aaa1 represents an optionally substituted C1 to C6 alkanediyl group etc.; Raa2 represents an optionally substituted C1 to C18 aliphatic hydrocarbon group; Rab1 represents a hydrogen atom and a methyl group; Aab1 represents a single bond, an optionally substituted C1 to C6 alkanediyl group etc.; W1 represents an optionally substituted C4 to C36 alicyclic hydrocarbon group; n represents 1 or 2; Aab2 in each occurrence independently represents an optionally substituted C1 to C6 aliphatic hydrocarbon group; Rab2 in each occurrence independently represents a C1 to C12 fluorinated alkyl group.
Abstract:
A semiconductor sensor device is provided which is composed of: a semiconductor sensor chip that includes a first substrate, a sensor circuit formed on the first substrate, a first conductive portion electrically connected to the sensor circuit, and a first redistribution layer electrically connected to the first conductive portion; a semiconductor chip that includes a second substrate, a processing circuit, formed on the second substrate, that processes an electrical signal output from the sensor circuit, a second conductive portion electrically connected to the processing circuit, and a second redistribution layer electrically connected to the second conductive portion; and a conductive connection component that electrically connects the first redistribution layer and the second redistribution layer, wherein at least one of the thickness of the first redistribution layer and the thickness of the second redistribution layer is 8 to 20 μm.
Abstract:
Provided is a method for manufacturing a semiconductor device including: an electrode formation step of forming an electrode on one surface of a semiconductor substrate; a through hole formation step of forming a through hole starting from a position on the other surface corresponding to the position of the electrode; a first insulating layer formation step of forming a first insulating layer on at least an inner circumferential surface, a periphery of an opening, and a bottom surface of the through hole; a modifying step of reforming a first portion of the first insulating layer formed on the bottom surface of the through hole; a modified region removal step of removing the modified region; and a conductive layer formation step of forming a conductive layer on the electrode exposed inside the through hole and on the first insulating layer such that the conductive layer is electrically connected with the electrode.