Abstract:
A method of operating a base station in a wireless communication system supporting Frequency-Quadrature Amplitude Modulation (FQAM) and Multi-Tone FQAM (MT-FQAM) is provided. The method includes determining a modulation scheme of data to be transmitted, and modulating the data according to the determined modulation scheme, wherein if at least one resource block is included in the data and if the at least one resource block is mapped to at least one tone in a distributed manner, the MT-FQAM scheme is selected, or if one resource block is included in the data and if the one resource block is mapped to at least one tone in a continuous manner, the FQAM scheme is selected, or if multiple resource blocks are included in the data and if the multiple resource blocks are mapped to at least one tone in a continuous manner, the MT-FQAM scheme is selected.
Abstract:
A method for transmitting a signal by a signal transmission apparatus in a communication system is provided. The method includes detecting a parameter related to a Quadrature Amplitude Modulation (QAM) scheme and a parameter related to a Frequency Shift Keying (FSK) scheme based on channel quality and an interference component, and modulating information bits using a modulation scheme based on the QAM scheme and the FSK scheme which uses the parameter related to the QAM scheme and the parameter related to the FSK scheme.
Abstract:
A Base Station (BS) cooperative communication method in a wireless communication system is provided. The BS cooperative communication method includes measuring signal quality of one or more neighboring BSs, comparing a number of downlink beams available for communication between a serving BS and a Mobile Station (MS) with a reference value, determining not to involve the one or more neighboring BSs in BS cooperative communication for the MS when the number of downlink beams is equal to or larger than the reference value, comparing signal measurements of the one or more neighboring BSs with a first threshold when the number of downlink beams is smaller than the reference value, and determining to involve one or more neighboring BSs having a signal measurement value larger than the first threshold in the BS cooperative communication for the MS.
Abstract:
A method and a mobile station of transmitting beam information by a mobile station in a wireless communication system are provided. The mobile station determines whether a particular a particular event according to communication with a base station has occurred, and transmits information on at least one DownLink (DL) transmission beam among N number of DL transmission beams to the base station using a contention-based feedback channel according to a result of the determination.
Abstract:
The present disclosure relates to a communication technique for converging, with an IoT technology, a 5G communication system for supporting a higher data transmission rate than a 4G system, and a system therefor. The present disclosure may be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, and security and safety related services, on the basis of 5G communication s technologies and IoT-related technologies. To this end, a communication device may determine control information for a superposition transmission, and acquire selection sources in response to the determined control information. The communication device may transmit a preamble sequence on the basis of the acquired selection sources in a preamble transmission area according to the superposition transmission, and transmit data using the determined control information in a data superposition transmission area according to the superposition transmission.
Abstract:
A method by which a small base station (BS) transmits a discovery signal (DS) in a mobile communication system is provided. The method includes a macro BS to which a component carrier (CC) of a predetermined frequency band is allocated, and at least one small base station to which N number of CCs of a frequency band different from that of the CC allocated to the macro base station are allocated. The method comprises the steps of generating the DS corresponding to predetermined information and transmitting the generated DS through a discovery channel (DCH) configured as a transmission resource of the macro base station, wherein the predetermined information is one among information on at least one CC that the small base station uses, cell ID (CID) index information of the small base station, and a sleep base station index when the small base station is in a sleep mode.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A terminal and method are provided for data signal transmission in a wireless communication system. The method includes receiving identification information of a band designated for the terminal; receiving a data signal generated based on resource allocation information on the band and an orthogonal frequency division multiple access (OFDMA) scheme; and demodulating and decoding the data signal based on the resource allocation information.
Abstract:
A method for performing synchronization by a device in a device to device (D2D) communication system is provided. The method includes transmitting a first synchronization signal, and transmitting offset information indicating a time difference between a synchronization reference time of the first synchronization signal and a transmission time of the first synchronization signal.
Abstract:
A method of feeding back channel information by a receiver in a communication system beam forming is provided. The method includes determining an optimum reception beam using intensities of reference signals received through transmission beams of a base station for a first period through a first path for mapping analog beams of an input signal, and determining an optimum transmission beam of the transmission beams using intensities of reference signals received through the optimum reception beam for a second period through a second path for mapping analog beams of the input signal, and transmitting channel information measured by using a reference signal received through the optimum transmission beam and the optical reception beam to a transmitter.
Abstract:
An apparatus and a method for operating a transmission end in a wireless communication system that supports Frequency and Quadrature-Amplitude Modulation (FQAM) are provided. The method includes dividing an information bit stream into a plurality of portions, encoding each of the plurality of portions using different encoding schemes, and generating an FQAM symbol by combining result values of the encoding of each of the plurality of portions, wherein the encoding schemes are different according to at least one of an encoding order, an encoding rate, an input size, and an encoding technique.