Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
An OLED display and a method of manufacturing thereof are disclosed. In one aspect, the display includes a scan line formed over a substrate and configured to transfer a scan signal, a data line and a driving voltage line crossing the scan line and respectively configured to transfer a data voltage and a driving voltage, and a switching transistor electrically connected to the scan line and the data line and including a switching drain electrode configured to output the data voltage. The display also includes a driving transistor including a driving gate electrode, a driving drain electrode, and a driving source electrode electrically connected to the switching drain electrode. The display further includes a storage capacitor including a first storage electrode electrically connected to the driving gate electrode and a second storage electrode formed on the same layer as the driving voltage line.
Abstract:
A thin film transistor array panel includes: a gate wiring layer disposed on a substrate; an oxide semiconductor layer disposed on the gate wiring layer; and a data wiring layer disposed on the oxide semiconductor layer, in which the data wiring layer includes a main wiring layer including copper and a capping layer disposed on the main wiring layer and including a copper alloy.
Abstract:
A thin film transistor array panel includes: a gate wiring layer disposed on a substrate; an oxide semiconductor layer disposed on the gate wiring layer; and a data wiring layer disposed on the oxide semiconductor layer, in which the data wiring layer includes a main wiring layer including copper and a capping layer disposed on the main wiring layer and including a copper alloy.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
An OLED display and a method of manufacturing the same are disclosed. In one aspect, the OLED display includes a substrate and a semiconductor layer formed over the substrate, wherein the semiconductor layer includes a channel and a contact region formed on opposing sides of the channel. The display also includes an insulating layer formed over the semiconductor layer and having a contact hole exposing the contact region, and an OLED formed over the insulating layer, wherein the OLED is electrically connected to the contact region through the contact hole, and wherein at least a portion of the contact hole is formed directly above the contact region.
Abstract:
A thin film transistor, a thin film transistor array panel including the same, and a method of manufacturing the same are provided, wherein the thin film transistor includes a channel region including an oxide semiconductor, a source region and a drain region connected to the channel region and facing each other at both sides with respect to the channel region, an insulating layer positioned on the channel region, and a gate electrode positioned on the insulating layer, wherein an edge boundary of the gate electrode and an edge boundary of the channel region are substantially aligned.
Abstract:
A thin film transistor display panel according to an exemplary embodiment of the present invention includes a substrate, a first insulating layer formed on the substrate, a semiconductor layer formed on the first insulating layer, a second insulating layer formed on the semiconductor layer, and a gate electrode formed on the second insulating layer, in which the first insulating layer includes a light blocking material, and a thickness of the first insulating layer is greater than or equal to a thickness of the second insulating layer.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.