Abstract:
An organic light emitting display device according to an exemplary embodiment of the present disclosure includes: a first substrate provided with a thin film transistor layer where a plurality of pixels are formed; a second substrate covering the first substrate; and a sealant formed along edges of the first and second substrates to bond both of the first and second substrates, wherein the sealant is formed above the thin film transistor of the first substrate, the sealant comprises an organic sealant and a protection member formed outside of the organic sealant, and the protection member is formed of a dual layer of an inorganic layer and an elastic member.
Abstract:
Provided is a display device. The display device comprises a first substrate, wherein a first contact hole is defined in the first substrate, a barrier layer on the first substrate, wherein a second contact hole is defined in the barrier layer and connected to the first contact hole, a first connection line on the barrier layer and inserted into the second contact hole, a second substrate covering the first connection line and the barrier layer, and a thin-film transistor layer on the second substrate and including at least one thin-film transistor. The thin-film transistor layer further includes a second connection line connected between the first connection line and the at least one thin-film transistor.
Abstract:
A display device includes: a plurality of pixels on a substrate, each of the plurality of pixels including a light emitting element and a pixel circuit configured to drive the light emitting element, wherein the pixel circuit of each of the plurality of pixels comprises: a first-first transistor configured to control a driving current flowing through the light emitting element based on a voltage of a first node; a first-second transistor connected in series with the first-first transistor and configured to control the driving current based on a voltage of a second node; a second transistor configured to selectively supply a data voltage to a third node which is a first electrode of the first-first transistor; a third-first transistor connected between the first node and a fourth node which is a second electrode of the first-second transistor; and a third-second transistor connected between the second node and the fourth node.
Abstract:
A light emitting display device includes: a light emitting element; a second transistor connected to a scan line; a first transistor which applies a current to the light emitting element; a capacitor connected to a gate electrode of the first transistor; and a third transistor connected to an output electrode of the first transistor and the gate electrode of the first transistor. Channels of the second transistor, the first transistor, and the third transistor are disposed in a polycrystalline semiconductor layer, and a width of a channel of the third transistor is in a range of about 1 μm to about 2 μm, and a length of the channel of the third transistor is in a range of about 1 μm to about 2.5 μm.
Abstract:
A display device includes: a flexible display panel having a display area and a non-display area disposed adjacent to the display area; a supporting member provided at a predetermined area of the flexible display panel adjacent to one side of the flexible display panel, wherein the non-display area of the flexible display panel contacts the supporting member and surrounds the supporting member while being bent at a bend angle, and the bend angle of the non-display area is variously adjusted by the supporting member.
Abstract:
A light unit including: a light source; and an optical member that transmits and converts light emitted from the light source, wherein the optical member includes: a light guide; a low refractive index layer that is disposed on the light guide and has a lower refractive index than that of the light guide; a first capping layer that is disposed on the low refractive index layer; and a wavelength conversion layer that is disposed on the first capping layer and includes quantum dots, and the light guide includes a transparent metal oxide.
Abstract:
A display device is provided. A display device includes a non-display area where no image is displayed, and a display area where images are displayed, and including a first area and a second area having different light transmittances, and a first pixel and a second pixel, wherein a transistor and an anode electrode of the first pixel are in the first area, wherein an anode electrode of the second pixel is in the second area, and a transistor of the second pixel is outside the second area, wherein the anode electrode and the transistor of the second pixel are electrically connected by a connection line, and wherein at least a part of the connection line is in at least one of the first area and the second area, and is covered by an anti-reflection layer.
Abstract:
A method of manufacturing an OLED device includes: preparing a substrate on which a first conductive layer and a pixel defining film defining a plurality of pixels and exposing the first conductive layer for each of the plurality of pixels; disposing a photoresist pattern on the pixel defining film, the photoresist pattern comprising an opening exposing a first pixel of the plurality of pixels; disposing a first material layer onto an entire surface of the substrate to simultaneously dispose an organic light-emitting layer and a first deposition layer; disposing a second material layer onto the entire surface of the substrate to simultaneously dispose a second conductive layer and a second deposition layer; disposing a third material layer onto the entire surface of the substrate to simultaneously dispose a protection layer and a third deposition layer; and removing the photoresist pattern and the first, second, and third deposition layers.
Abstract:
A liquid crystal display has liquid crystal containerizing micro-cavities monolithically integrally formed as part of a thin film transistors substrate thereof where mouths of the micro-cavities are sealed shut by material of a capping layer and where the capping layer is patterned to have relatively thicker regions and comparatively thinner or devoid of capping material regions interposed between the thicker regions for thereby providing the capping layer with improved flexibility, the relatively thicker regions being disposed over the mouths of the microcavities.