Abstract:
A conductive pattern for a display device includes a first layer including aluminum or an aluminum alloy disposed on a substrate and forming a first taper angle with the substrate, and a second layer disposed on the first layer forming a second taper angle with the first layer, in which the second taper angle is smaller than the first taper angle.
Abstract:
A display device may include a substrate, an active pattern layer, a gate insulating layer, a first metal pattern layer, an interlayer insulating layer, a second metal pattern layer, and a passivation film. The active pattern layer may be disposed on the substrate. The gate insulating layer may be disposed on the active pattern layer. The first metal pattern layer may be disposed on the gate insulating layer. The interlayer insulating layer may be disposed on the first metal pattern layer. The second metal pattern layer may be disposed on the interlayer insulating layer. The passivation film may be disposed on the side wall of the second metal pattern layer.
Abstract:
A polarizing layer includes a substrate and a plurality of parallel wires disposed on the substrate. Each of the plurality of wires includes a base layer disposed on the substrate and an anti-reflective layer disposed on the base layer. The base layer includes aluminum or an aluminum alloy. The anti-reflective layer has a thickness within a range of 12 nm to 40 nm.
Abstract:
An organic light-emitting diode display device includes a pixel electrode, a pixel-defining layer, an organic emission layer, and a counter electrode. The pixel-defining layer includes an opening partially exposing the pixel electrode. The organic emission layer is disposed on the pixel electrode. The organic emission layer is disposed in the opening. The counter electrode is disposed on the organic emission layer. The counter electrode opposes the pixel electrode. The pixel-defining layer includes a first pixel-defining layer and a second pixel-defining layer. The first pixel-defining layer is disposed on the pixel electrode and includes an inorganic material. The second pixel-defining layer is disposed on the first pixel-defining layer and includes an organic material. A sidewall of the first pixel-defining layer that is closest to the opening is aligned with a sidewall of the second pixel-defining layer that is closest to the opening.
Abstract:
A thin film transistor array panel includes a substrate, an insulation layer, a first semiconductor, and a second semiconductor. The insulation layer is disposed on the substrate and includes a stepped portion. The first semiconductor is disposed on the insulation layer. The second semiconductor is disposed on the insulation layer and includes a semiconductor material different than the first semiconductor. The stepped portion is spaced apart from an edge of the first semiconductor.
Abstract:
A method of fabricating a display device includes forming a thin-film transistor including a gate electrode, a source electrode and a drain electrode on a substrate, forming a first insulating layer and a second insulating layer on the thin-film transistor, forming a common electrode on the second insulating layer by depositing a common electrode material on the second insulating layer, plasma-treating a photoresist pattern on the common electrode material, and etching the common electrode material using the plasma-treated photoresist pattern as a mask, defining a contact hole in the second insulating layer which corresponds to the drain electrode using the plasma-treated photoresist pattern and the common electrode as a mask, forming a third insulating layer on the second insulating layer and the common electrode to expose the contact hole and the drain electrode and forming a pixel electrode connected to the drain electrode on the third insulating layer.
Abstract:
A method of manufacturing a thin film transistor array panel includes: a gate insulating layer disposed on a gate electrode, a semiconductor disposed on the gate insulating layer, a source electrode opposite a drain electrode disposed on the semiconductor, a color filter disposed on the gate insulating layer, an overcoat disposed on the color filter and including an inorganic material. A first dry etching is performed using the photosensitive film pattern as a mask to etch the overcoat and provide a preliminary contact hole, through which a portion of the color filter is exposed. A second dry etching is performed using the overcoat as a mask to etch the color filter through the preliminary contact hole and to provide a contact hole, through which a portion of the drain electrode is exposed. A pixel electrode is connected to the drain electrode through the contact hole, on the overcoat.
Abstract:
A thin film transistor array panel includes a substrate, gate lines, each including a gate pad, a gate insulating layer, data lines, each including a data pad connected to a source and drain electrode, a first passivation layer disposed on the data lines and the drain electrode, a first electric field generating electrode, a second passivation layer disposed on the first electric field generating electrode, and a second electric field generating electrode. The gate insulating layer and the first and second passivation layers include a first contact hole exposing a part of the gate pad, the first and second passivation layers include a second contact hole exposing a part of the data pad, and at least one of the first and second contact holes have a positive taper structure having a wider area at an upper side than at a lower side.
Abstract:
A method of manufacturing a thin film transistor array substrate includes providing a plurality of gate lines and a plurality of data lines on a first substrate, providing an organic layer on the gate lines and the data lines, providing a first electrode on the organic layer, providing a passivation layer on the first electrode, providing a second electrode on the passivation layer, providing a first cover layer on the second electrode to cover the second electrode, providing a plurality of photosensitive layer patterns on the first cover layer, providing a plurality of first cutout patterns in the first cover layer and a plurality of second cutout patterns in the second electrode using the photosensitive layer patterns as an etch mask, and providing a plurality of third cutout patterns in the passivation layer using the first cover layer as an etch mask.
Abstract:
A thin film transistor array panel includes: a substrate, a gate line positioned on the substrate and including a gate electrode, a semiconductor layer positioned on the substrate and including an oxide semiconductor, a data wire layer positioned on the substrate and including a data line crossing the gate line, a source electrode connected to the data line, and a drain electrode facing the source electrode, and a capping layer covering the data wire layer, in which an end of the capping layer is inwardly recessed as compared to an end of the data wire layer.