Abstract:
An organic light-emitting device is disclosed, the organic light-emitting device comprising a first electrode, a second electrode disposed opposite to the first electrode, and an emission layer comprising organic materials and disposed between the two electrodes. The emission layer may include a host and a dopant. The host may be a silane derivative of anthracene having at least one silicon substituent that is an aryl group having at least two rings that are fused to each other. The dopant may be a 7H-benzo[c]fluorene having diarylamino substituents at the 5- and 9-positions. This scheme provides organic light-emitting devices having low driving voltages, high light-emitting efficiencies and long lifetimes.
Abstract:
Provided is an organic light-emitting device, including a first electrode; a second electrode facing the first electrode; an emission layer (EML) disposed between the first electrode and the second electrode; a hole transporting region between the first electrode and the EML; and an electron transporting region between the EML and the second electrode. The hole transporting region includes an amine-based compound represented by one of Formulae 1A and 1C: The EML includes an organic metal complex and a compound represented by one of Formulae formula 2, 10A, 10B, 10C, 10D, and 10E:
Abstract:
An organic light-emitting display device includes a substrate, a plurality of pixel electrodes arranged in a matrix on the substrate, and an organic common layer covering the pixel electrodes. The pixel electrodes include a plurality of first pixel electrodes, a plurality of second pixel electrodes, and a plurality of third pixel electrodes. An n-th pixel column includes the second pixel electrodes; and the third pixel electrodes arranged alternately, an (n+1)-th pixel column which is adjacent to the n-th pixel column includes the first pixel electrodes, and an (n+2)-th pixel column which is adjacent to the (n+1)-th pixel column includes the second pixel electrodes and the third pixel electrodes arranged alternately, wherein n is a natural number. One of the second and third pixel electrodes is disposed in the n-th pixel column in a row and the other one of the second and third pixel electrodes is disposed in the (n+2)th pixel column in the same row.
Abstract:
Condensed-cyclic organic compounds, synthetic methods for preparing the same and an organic light-emitting diode including the same are presented. The subject polycyclic triarylamines are prepared via a series of substitution and cyclization reactions.
Abstract:
An organic light emitting display includes a substrate; a first pixel electrode disposed on the substrate; a second pixel electrode disposed on the substrate; a hole auxiliary layer disposed on the first pixel electrode and the second pixel electrode; a first organic emission layer disposed on the hole auxiliary layer in correspondence with the first pixel electrode and the second pixel electrode; a blue organic emission layer disposed on the hole auxiliary layer in correspondence with the first pixel electrode and the second pixel electrode, the blue organic emission layer being further disposed on the first organic emission layer; a non-doping blue organic emission layer disposed on the blue organic emission layer; an electron auxiliary layer disposed on the non-doping blue organic emission layer; and a common electrode disposed on the electron auxiliary layer.
Abstract:
An organic light emitting device including a plurality of organic layers between a first electrode and an emitting layer, wherein the organic layer includes an electron blocking layer. In one embodiment, a first organic layer, an electron blocking layer, a second organic layer and an emitting layer are formed on the first electrode. The electron blocking layer has a Lowest Unoccupied Molecular Orbital (LUMO) level which is lower than that of the first organic layer. Thus, the electron blocking layer traps excess electrons injected from the emitting layer, thereby improving lifetime characteristics of the OLED.
Abstract:
A donor substrate includes a base substrate, a light to heat conversion layer, a buffer layer and a transfer layer. The light to heat conversion layer may be disposed on the base substrate. The buffer layer may be disposed on the light to heat conversion layer. The buffer layer may include at least one porous layer having a plurality of pores. The transfer layer may be disposed on the buffer layer.
Abstract:
A device for manufacturing a donor substrate, the device including a film supply unit for supplying a flexible base film in a supply direction, a film guide unit at a front of the film supply unit in the supply direction for supporting the base film and for guiding the base film in the supply direction, a frame transferring unit at the front of the supply direction and for providing a support frame configured to be coupled to the base film and for transferring the frame while contacting a first side of the base film, and a heating unit facing the frame transferring unit with the base film therebetween for heating and for pressurizing a part of the base film contacting the support frame.
Abstract:
A deposition apparatus includes: a deposition source including a spray nozzle linearly arranged in a first direction and discharging a deposition material; and a pair of angle control members disposed at both sides of the deposition source and controlling a discharging direction angle of the deposition material. Each angle control member includes a rotation axis parallel to the first direction, and a plurality of shielding plates installed about the rotation axis and separated from each other by a predetermined interval around the rotation axis. Although the deposition angle is changed according to the increasing of the process time, the deposition angle is compensated to form a uniform thin film. Also, the organic thin film may be uniformly deposited through each pixel of an organic light emitting diode (OLED) display, thereby increasing luminance uniformity for each pixel.
Abstract:
A method of forming a film on a substrate includes depositing first and second evaporating source materials respective from first and second evaporating sources onto the substrate while moving the evaporating sources together with respect to the substrate, the first and second evaporating source materials being different from each other and positioned to provide a non-overlapping deposition region of the first evaporating source material, an overlapping deposition region of the first and second evaporating source materials and a non-overlapping deposition region of the second source material such that when the evaporating sources are moved, a film is formed to include a first layer that is a deposition of only the first evaporating source material, a second layer that is a deposition of a mixture of the first evaporating source material and the second evaporating source material and a third layer that is a deposition of only the second source material.