Abstract:
Provided are an organic light emitting diode and a method of manufacturing the same. The organic light emitting diode adjusts an optical resonance thickness and prevents spectrum distortions without use of an auxiliary layer. The organic light emitting diode includes a first electrode that is optically reflective; a second electrode that is optically transmissible and faces the first electrode; an organic emission layer interposed between the first electrode and the second electrode, the organic emission layer including: a first emission layer including a mixed layer that contains a host material and a dopant material, and a second emission layer comprising only the host material; and a carrier injection transport layer interposed between the organic emission layer and the first electrode or between the organic emission layer and the second electrode.
Abstract:
An organic light emitting device is described. The organic light emitting device includes: a substrate; a first electrode on the substrate; an emission layer on the first electrode; a second electrode on the emission layer; and an exciton blocking layer between the first electrode and the emission layer, in which a LUMO energy level of the exciton blocking layer is higher than a LUMO energy level of the emission layer.
Abstract:
An organic light emitting device is described. The organic light emitting device includes: a substrate; a first electrode on the substrate; an emission layer on the first electrode; a second electrode on the emission layer; and an exciton blocking layer between the first electrode and the emission layer, in which a LUMO energy level of the exciton blocking layer is higher than a LUMO energy level of the emission layer.
Abstract:
Provided are an organic light emitting diode and a method of manufacturing the same. The organic light emitting diode adjusts an optical resonance thickness and prevents spectrum distortions without use of an auxiliary layer. The organic light emitting diode includes a first electrode that is optically reflective; a second electrode that is optically transmissible and faces the first electrode; an organic emission layer interposed between the first electrode and the second electrode, the organic emission layer including: a first emission layer including a mixed layer that contains a host material and a dopant material, and a second emission layer comprising only the host material; and a carrier injection transport layer interposed between the organic emission layer and the first electrode or between the organic emission layer and the second electrode.
Abstract:
A method of forming a film on a substrate includes depositing first and second evaporating source materials respective from first and second evaporating sources onto the substrate while moving the evaporating sources together with respect to the substrate, the first and second evaporating source materials being different from each other and positioned to provide a non-overlapping deposition region of the first evaporating source material, an overlapping deposition region of the first and second evaporating source materials and a non-overlapping deposition region of the second source material such that when the evaporating sources are moved, a film is formed to include a first layer that is a deposition of only the first evaporating source material, a second layer that is a deposition of a mixture of the first evaporating source material and the second evaporating source material and a third layer that is a deposition of only the second source material.
Abstract:
A method of forming a film on a substrate includes depositing first and second evaporating source materials respective from first and second evaporating sources onto the substrate while moving the evaporating sources together with respect to the substrate, the first and second evaporating source materials being different from each other and positioned to provide a non-overlapping deposition region of the first evaporating source material, an overlapping deposition region of the first and second evaporating source materials and a non-overlapping deposition region of the second source material such that when the evaporating sources are moved, a film is formed to include a first layer that is a deposition of only the first evaporating source material, a second layer that is a deposition of a mixture of the first evaporating source material and the second evaporating source material and a third layer that is a deposition of only the second source material.