Abstract:
An organic light emitting diode display includes a p-doped layer that can obtain high efficiency at low-voltage driving and low current and prevent leakage current by differentially forming the p-doped layer for each pixel.
Abstract:
A deposition apparatus includes a deposition source emitting a deposition material and an angle control member disposed on both sides of the deposition source and controlling an emission direction angle of the deposition material. The angle control member includes a housing having an internal space opened in an emission direction of the deposition material and a sliding member having a first end which is inserted into the internal space and a second end disposed on an emission path of the deposition material. The sliding member is movable forward and backward in the emission direction of the deposition material along the internal space. A method of manufacturing an organic light emitting diode (OLED) display which uses the deposition apparatus is also disclosed.
Abstract:
An organic light-emitting device with an electron transport layer disposed between the organic emission layer and the second electrode and comprising an anthracene-based compound and a carbazole-based compound represented by Formula 1 below: with improved efficiency and lifetime and a method for preparing the same are provided.
Abstract:
An organic light emitting diode display includes a p-doped layer that can obtain high efficiency at low-voltage driving and low current and prevent leakage current by differentially forming the p-doped layer for each pixel.
Abstract:
Provided is an organic light emitting diode that is highly efficient and has a long lifespan. The organic light emitting diode includes a carbazole-based compound for improving light emission efficiency. In certain embodiments an electron transport layer can include an anthraces-based compound. The organic light emitting diode may be included in a flat display diode including a thin film transistor (TFT).
Abstract:
Provided is an organic light emitting diode that is highly efficient and has a long lifespan. The organic light emitting diode includes a carbazole-based compound for improving light emission efficiency. In certain embodiments an electron transport layer can include an anthraces-based compound. The organic light emitting diode may be included in a flat display diode including a thin film transistor (TFT).
Abstract:
An organic light emitting diode display includes a p-doped layer that can obtain high efficiency at low-voltage driving and low current and prevent leakage current by differentially forming the p-doped layer for each pixel.
Abstract:
An organic light emitting display includes a substrate; a first pixel electrode disposed on the substrate; a second pixel electrode disposed on the substrate; a hole auxiliary layer disposed on the first pixel electrode and the second pixel electrode; a first organic emission layer disposed on the hole auxiliary layer in correspondence with the first pixel electrode and the second pixel electrode; a blue organic emission layer disposed on the hole auxiliary layer in correspondence with the first pixel electrode and the second pixel electrode, the blue organic emission layer being further disposed on the first organic emission layer; a non-doping blue organic emission layer disposed on the blue organic emission layer; an electron auxiliary layer disposed on the non-doping blue organic emission layer; and a common electrode disposed on the electron auxiliary layer.
Abstract:
An organic light emitting diode display includes a p-doped layer that can obtain high efficiency at low-voltage driving and low current and prevent leakage current by differentially forming the p-doped layer for each pixel.
Abstract:
An organic light emitting diode display includes a first substrate, an organic light emitting diode on the first substrate, a capping layer on the organic light emitting diode. The capping layer includes a first surface facing the organic light emitting diode and a second surface opposite the first surface. The capping layer has a gradient of refractive index that varies along a thickness direction from the first surface toward the second surface.