Abstract:
Described herein are variable gain amplifiers and multiplexers that embed programmable attenuators into switchable paths to provide variable gain for individual amplifier inputs. The variable gain for an individual input is provided using an amplification stage that is common for each input of the amplifier. A variable attenuation is provided for individual inputs through a combination of a band selection switch and an attenuation selection branch. Individual inputs can be configured to bypass the variable attenuation in a high gain mode.
Abstract:
Disclosed herein are signal amplifiers having a plurality of amplifier cores. Individual amplifier cores can be designed to enhance particular advantages while reducing other disadvantages. The signal amplifier can then switch between amplifier cores in a particular gain mode to achieve desired performance characteristics (e.g., improving noise figure or linearity). Examples of signal amplifiers disclosed herein include amplifier architectures with a low noise figure amplifier core that reduces the noise figure and a linearity boost amplifier core that increases linearity. The disclosed signal amplifiers can switch between a first active core and a second active core for a single or particular gain mode to achieve desired signal characteristics during different time periods.
Abstract:
Described herein are variable gain amplifiers that selectively provide variable or tailored impedances at a degeneration block and/or feedback block depending at least in part on a gain mode of the variable gain amplifier. This advantageously reduces or eliminates performance penalties in one or more gain modes. The variable impedances can be configured to improve linearity of the amplification process in targeted gain modes. The variable gain amplifier can be configured to provide a low-loss bypass mode in a low gain mode to improve signal quality.
Abstract:
Disclosed herein are signal amplifiers having a plurality of amplifier cores. Individual amplifier cores can be designed for particular gain modes to enhance particular advantages while reducing other disadvantages. The signal amplifier can then switch between amplifier cores when switching gain modes to achieve desired performance characteristics (e.g., improving noise figure or linearity). Examples of signal amplifiers disclosed herein include amplifier architectures with a high gain amplifier core that reduces the noise figure and a linearity boost amplifier core that increases linearity (e.g., for lower gain modes). The disclosed signal amplifiers can also have switchable reference biases to provide targeted bias current matching. The disclosed signal amplifiers can also include degeneration switching blocks for individual amplifier cores to improve signal linearity.
Abstract:
Apparatus and methods for digital step attenuators are provided herein. In certain configurations, a DSA includes a plurality of DSA stages that can be set in an attenuation mode or in a bypass mode using a plurality of switching circuits. A first switching circuit of the plurality of switching circuits includes a field effect transistor (FET) switch, a gate resistor, one or more gate resistor bypass switches, and a pulse generation circuit. The gate resistor is electrically connected between a switch control input and a gate of the FET switch, and a switch control signal can be provided to the switch control input to turn on or off the FET switch. In response to detecting a rising and/or falling edge of the switch control signal, the pulse generation circuit can control the one or more gate resistor bypass switches to bypass the gate resistor.
Abstract:
Apparatus and methods for digital step attenuators are provided herein. In certain configurations, a DSA includes a plurality of DSA stages that can be set in an attenuation mode or in a bypass mode using a plurality of switching circuits. A first switching circuit of the plurality of switching circuits includes a field effect transistor (FET) switch, a gate resistor, one or more gate resistor bypass switches, and a pulse generation circuit. The gate resistor is electrically connected between a switch control input and a gate of the FET switch, and a switch control signal can be provided to the switch control input to turn on or off the FET switch. In response to detecting a rising and/or falling edge of the switch control signal, the pulse generation circuit can control the one or more gate resistor bypass switches to bypass the gate resistor.
Abstract:
Apparatus and methods for digital step attenuators are provided herein. In certain configurations, a DSA includes a plurality of DSA stages that can be set in an attenuation mode or in a bypass mode using a plurality of switching circuits. A first switching circuit of the plurality of switching circuits includes a field effect transistor (FET) switch, a gate resistor, one or more gate resistor bypass switches, and a pulse generation circuit. The gate resistor is electrically connected between a switch control input and a gate of the FET switch, and a switch control signal can be provided to the switch control input to turn on or off the FET switch. In response to detecting a rising and/or falling edge of the switch control signal, the pulse generation circuit can control the one or more gate resistor bypass switches to bypass the gate resistor.
Abstract:
Apparatus and methods for digital step attenuators are provided herein. In certain configurations, a DSA includes a plurality of DSA stages that can be set in an attenuation mode or in a bypass mode using a plurality of switching circuits. A first switching circuit of the plurality of switching circuits includes a field effect transistor (FET) switch, a gate resistor, one or more gate resistor bypass switches, and a pulse generation circuit. The gate resistor is electrically connected between a switch control input and a gate of the FET switch, and a switch control signal can be provided to the switch control input to turn on or off the FET switch. In response to detecting a rising and/or falling edge of the switch control signal, the pulse generation circuit can control the one or more gate resistor bypass switches to bypass the gate resistor.