Abstract:
Apparatus and methods of improving call performance by enabling/continuing uplink transmissions during poor downlink radio conditions. The apparatus and methods further include monitoring, by a user equipment (UE), downlink (DL) signal conditions associated with a serving Node B. Moreover, the apparatus and methods include triggering an out-of-sync state upon a determination that the DL signal conditions have degraded beyond a DL signal quality threshold. Additionally, the apparatus and methods include delaying turning off of a power amplifier (PA) associated with transmission of uplink (UL) messages for a call performance improvement threshold time duration.
Abstract:
Aspects of the present disclosure are directed to a user equipment, an RNC, or an application operable in a wireless communications network and methods. A network controller for wireless communication is configured to transfer data via a first user plane connection in a first radio access network and initiate a handover procedure of transferring the user equipment to a second user plane connection in a second radio access network.
Abstract:
Apparatus and methods of mobility management include identifying a target cell as an active set candidate. The apparatus and methods further include determining that a trigger adjustment condition exists, wherein the trigger adjustment condition triggers an adjustment of a timing value that indicates a sending time of a target cell add message to a serving cell. Moreover, the apparatus and methods include sending the target cell add message including the target cell to the serving cell based on determining that the trigger adjustment condition exists.
Abstract:
Methods and apparatus for wireless communication in a mobile device that includes receiving a transmission data packet and detecting a string of bytes in the transmission data packet that matches a preset string of bytes saved in a memory component. Aspects of the methods and apparatus include replacing the string of bytes of the transmission data packet that has been determined to match the preset string of bytes saved in the memory component with a location pointer, wherein after replacing the string of bytes in the data packet with the location pointer, the data packet comprises the location pointer and a set of literal bytes. Aspects of the methods and apparatus also include generating a compressed transmission data packet by entropy coding the transmission data packet comprising the set of literal-bytes and the location pointer. receiving a transmission data packet;
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with enabling communication of small data amounts while maintaining a RRC idle mode of operation for a UE. In an example, a UE is equipped to obtain a temporary radio bearer for communication of data, that meets one or more criteria for small data transmission, over a user plane in a UMTS or LTE based network, and transmit the data, over the user plane, using the temporary radio bearer while maintaining the UE in an RRC idle mode. A UTRAN entity may receive, over the temporary radio bearer assignment, the data from a UE in an idle mode, and send the data to a SGSN using a common small data connection. The SGSN may then send the data to a PGW.
Abstract:
A method and apparatus for wireless communication may provide for reduced data loss during mobility events in a wireless communication network capable of downlink carrier aggregation. Some aspects of the disclosure provide for maintaining data corresponding to a flow in at least one buffer at a Node B when the Node B acts as a serving cell for the same UE both before and after a serving cell change. Another aspect of the disclosure provides for transferring buffered data from a Node B that acts as a serving cell for a UE before a serving cell change, to a Node B that acts as a serving cell for the UE after the serving cell change.
Abstract:
Methods, systems, and devices are described for wireless communication. A user equipment (UE), for example, may determine a content size of an uncompressed buffer and a content size of a compressed buffer. The UE may then generate a buffer status report (BSR) based on the content sizes of the uncompressed buffer and the compressed buffer. Alternatively, a base station may receive a BSR based on a size of an uncompressed buffer of the UE. The base station may then receive a compressed packet from the UE and may determine a compression gain based on a size of the compressed packet and a size of a corresponding uncompressed packet. The base station may then adjust the received BSR based on the compression gain.
Abstract:
Methods and apparatus for offloading traffic from a cellular network to a wireless local area network (WLAN) are described. One example method generally includes receiving, from a serving base station, a request to measure one or more WLAN access points (APs), determining one or more metrics for the WLAN APs, comparing the metrics for the WLAN APs to a threshold, and reporting metrics for at least a first AP of the WLAN APs if the metrics for the first AP exceed the threshold.
Abstract:
Aspects related to pre-configuring for a serving cell change to neighbor cells are described. In one example, a user equipment (UE) may camp on a first cell. The UE may receive at least one communication including target cell pre-configuration information for one or more neighbor cells eligible for pre-configuration. The UE may determine that the first cell is no longer providing adequate service and identify a target cell, which may be one of the one or more neighbor cells, but is not part of an active set for the UE. The UE may transmit a message (e.g., Event 1d) requesting a serving cell change to the target cell. The UE may configure to receive service from the target cell based on the pre-configuration information associated with the target cell. The UE may receive an indication to perform the serving cell change and perform the serving cell change.
Abstract:
Aspects relate to a Remote NodeB Relay that appears similar to a NodeB, a Radio Network Controller (RNC), and served mobile devices. Also provided is a Super-Light Router Relay that can provide better performance and QoS to served mobile devices while mitigating modifications to mobile devices, NodeBs, or interfaces between RNC and intermediary NodeBs. Aspects also relate to an Internet Protocol (IP) Relay that requires few, if any, modifications to mobile devices, NodeBs, or interfaces between RNC and intermediary NodeBs. Further, changes to an RNC and/or a core network can be mitigated though utilization of a strategic Relay Gateway.