Abstract:
Techniques for providing access point (AP) vicinity information are disclosed. In one example, the techniques include determining a first set of vicinity information corresponding to signal values for an AP at a set of grid points for the coverage area of the AP, encoding the first set of AP vicinity information based at least on a difference between AP vicinity information values for adjacent grid points to generate a second set of AP vicinity information, and providing the second set of AP vicinity information to a device. In one example, the techniques include receiving, for a set of grid points, a first set of AP vicinity information that is compressed based at least on a difference between AP vicinity information values for adjacent grid points, and performing decompression to obtain a second set of AP vicinity information corresponding to signal values for an AP at the set of grid points.
Abstract:
Methods and apparatuses for supporting location and emergency calls for an over-the-top (OTT) service provider are disclosed. A UE may send a request for an emergency call to an OTT service provider and may include in the request mobile network operator (MNO) data for a serving MNO for the UE. The OTT service provider may forward the emergency call request to an Internet Protocol (IP) Multimedia Subsystem (IMS). The IMS may determine routing information for the emergency call and either return the routing information to the OTT service provider to enable the OTT service provider to route the emergency call to a public safety answering point (PSAP) or may route the emergency call itself to the PSAP. The call request routed by the IMS or by the OTT service provider may include a reference identifier that may enable the PSAP to obtain a location for the UE from the IMS.
Abstract:
A method is provided to enable handoff of an emergency services call between different network operators. A UE may establish a first call with a first network for a first network operator based on a first wireless access type, where the first call is an emergency services call to a PSAP. The UE may then determine impaired wireless coverage for the first wireless access type and unimpaired wireless coverage for a second wireless access type for a second network, where the second network is for a second network operator different to the first network operator. The UE may then establish a second call with the second network based on the second wireless access type, where the second call is a continuation of the first call to the PSAP. In embodiments, the first wireless access type is WiFi and the second wireless access type is cellular.
Abstract:
Disclosed are methods, devices, systems, nodes, apparatus, servers, computer-/processor-readable media, and other implementations, including a method, at a wireless node, for supporting positioning of one or more wireless devices. The method includes transmitting, by the wireless node configured as a positioning beacon, a first downlink signal for supporting positioning of the one or more wireless devices, and transmitting a second downlink signal that inhibits a receiving wireless device, from the one or more wireless devices, from sending uplink signals to the wireless node configured as the positioning beacon.
Abstract:
Systems and methods are described to enable management of an asset to be transferred from a first entity to a second entity such that an Information Manager that stores information for the asset can authenticate the management transfer when the second entity requests the Information Manager to access or modify the stored information for the asset. Authentication is enabled using a token assigned to the asset by the Information Manager which is provided to the first entity by the Information Manager, transferred from the first entity to the second entity following the transfer of management and provided to the Information Manager by the second entity to enable authentication of the request by the second entity to access or modify the stored information for the asset. In an embodiment, the asset may be a WiFi access point or Bluetooth beacon and the Information Manager may be a National Emergency Address Manager.
Abstract:
A method for obtaining a secure connection between a first server and a client. The method may comprise establishing a secure communication session between a second server and the client, wherein the second server is trusted by the first server, and the second server is configured to authenticate the client. The client may receive a client token, wherein the client token contains data associated with the first server, the second server, the client, and a digital signature. Then, the client may request secure communication access to the first server, wherein the request includes transferring the client token to the first server. Finally, the client may receive a grant of secure communication access to the first server based on authentication of the client by the first server, wherein the authentication is based on the client token validating the client and the digital signature validating the client token.
Abstract:
Techniques for providing uncompensated barometric pressure (UBP) to a Public Safety Answering Point (PSAP) are disclosed. An example of an apparatus for providing UBP between a user equipment (UE) and the PSAP includes a location server and a gateway. The location server is configured to receive an uncompensated barometric pressure (UBP) from the UE, generate a civic or a geographic location record containing the UBP, and provide the civic or geographic location record containing the UBP to the gateway. The gateway is configured to receive the civic or geographic location record containing the UBP from the location server and either transfer the civic location record containing the UBP to the PSAP or extract the UBP from the civic or geographic location record, and provide the UBP separately to the PSAP.
Abstract:
Various techniques for locating an item are presented. A first location history may be received that is indicative of a first plurality of locations visited by a first mobile device. A first indication of a type of item being located by a user of the first mobile device may also be received. A second location history indicative of a second plurality of locations visited by a second mobile device may be received. A second indication of the type of item being located by a user of the second mobile device may also be received. A location of the type of item may be determined based on the first location history, the second location history and optionally the first and second indications. The determined location of the type of item may be subsequently provided to a mobile device to assist a user of the mobile device to locate the type of item. Provision of location history information and receipt of information to locate an item may occur in combination on a mobile device.
Abstract:
Techniques for providing access point (AP) vicinity information are disclosed. In one example, the techniques include determining a first set of vicinity information corresponding to signal values for an AP at a set of grid points for the coverage area of the AP, encoding the first set of AP vicinity information based at least on a difference between AP vicinity information values for adjacent grid points to generate a second set of AP vicinity information, and providing the second set of AP vicinity information to a device. In one example, the techniques include receiving, for a set of grid points, a first set of AP vicinity information that is compressed based at least on a difference between AP vicinity information values for adjacent grid points, and performing decompression to obtain a second set of AP vicinity information corresponding to signal values for an AP at the set of grid points.
Abstract:
Systems, apparatus and methods for reducing a long list of access points (APs) to a short list of access points are presented. Advantageously, a mobile device only needs to search for and measure access points on the short list to determine a position fix, thereby saving battery power, reducing a time to fix and/or improving location accuracy. Embodiments enable a mobile device to determine which access points should be detectable at a new location of the mobile device. Various embodiments comprise using: (1) linked APs; (2) grouped APs; (3) associated APs; and (4) feedback on APs.