Abstract:
Certain aspects of the present disclosure provide techniques for per-flow jumbo maximum transmission unit (MTU) in new radio (NR) systems. A method of wireless communication by a user equipment (UE) is provided. The method generally includes determining a default MTU size to be used for communications in a packet data network (PDN). The method includes determining one or more per-flow MTU sizes, different than the default MTU size, to be used for communications in the PDN. The method includes communicating in the PDN according to the determined per-flow MTU sizes.
Abstract:
Aspects of the present disclosure relate to methods and apparatuses for wireless communication using a protocol data unit (PDU) including a service data adaptation protocol (SDAP) PDU that has an unciphered header. The unciphered SDAP header facilitates various optimizations in wireless communication.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may identify a trigger condition relating to at least one of historical information stored by the UE, a user interaction with the UE, a mobility state of the UE, or an active or foreground application on the UE; and/or transmit a request for or proposal of a discontinuous reception (DRX) cycle length or configuration based at least in part on identifying the trigger condition, wherein the request for or proposal of the modified DRX cycle length identifies a positive or negative adjustment to the DRX cycle length. Numerous other aspects are provided.
Abstract:
A person may utilize multiple connected devices, such as smart watches, user equipments (UEs), smartphones, tablet computers, and/or the like, which may each be assigned unique phone numbers. Operators may assign a common phone number to the multiple connected devices; however, the phone number is not used in the access stratum path of a radio access technology resulting in multiple paging procedures being performed for the multiple connected devices. In implementations, described herein, a first UE, such as a smartphone, may obtain paging information associated with decoding paging messages for a second UE, such as a smart watch. The first UE may use the paging information to decode a paging message of a combined paging cycle established for the first UE and the second UE, thereby obviating a need for multiple paging cycles for the first UE and the second UE.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for quality of service (QoS) configuration for wireless communications. Certain aspects provide a method for wireless communication by a base station. The method generally includes determining a channel quality for a user equipment communicating on a wireless channel. The method further includes selecting one or more values for the one or more parameters for providing QoS to the user equipment in a range of parameter values based on the determined channel quality.
Abstract:
Aspects of the present disclosure relate to methods and apparatus for optimizing real time services (e.g., such as a voice over Long Term Evolution (LTE) (VoLTE)) for devices with limited communications resources, such as machine type communication (MTC) devices and enhanced MTC (eMTC) devices. In one aspect, a UE determines a first configuration of subframes within at least one radio frame available for the UE and other UEs to use for bundled communications with a BS. The UE receives an indication of one or more subframes within the at least one radio frame that are unavailable for bundled uplink transmissions, and determines a second configuration of subframes to use for bundled communications based on the indication. The UE overrides the first configuration of subframes with the second configuration of subframes, and communicates with the BS using the second configuration of subframes. Numerous other aspects are provided.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive sensor information from a sensor associated with the user equipment, wherein the user equipment is in a deep sleep mode when the sensor information is received. The user equipment may deactivate the deep sleep mode, based at least in part on receiving the sensor information, to permit the user equipment to transmit or decode a network communication.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for implementing extended signaling in wireless communications. An example method generally includes generally includes receiving, from a base station, an indication of an ability to support communications using extended signaling not defined by a radio access technology (RAT) standard and a grant of resources sized to accommodate extended signaling from the UE, transmitting, to the base station, an indication that the UE supports communications with the base station using extended signaling, and communicating with the base station using extended signaling. Numerous other aspects are provided.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. The apparatus may include memory and at least one processor, coupled to the memory, configured to determine a power parameter associated with communication using a first radio access technology (RAT). The at least one processor may be further configured to determine a quality parameter associated with the communication using the first RAT. The at least one processor may be further configured to apply, based on the quality parameter, an offset to the power parameter to form a modified power parameter. The at least one processor may be further configured to transmit a measurement report including the modified power parameter. The apparatus may be a wireless device, such as a user equipment (UE) and, more specifically, a high gain UE.
Abstract:
Efficient frequency assignment for mobile terminals in coexisting wireless communication systems is described herein. The coexisting wireless communication systems comprise a macro communication system and a localized communication system. Two prioritized lists are defined, a first list comprising a first entry relating to the macro communication system and the second entry relating to the localized communication system, the first and second entries each listing at least one common frequency. Based on the first list, a mobile terminal uses communication protocols associated with the localized communication system.