Abstract:
Methods, apparatuses, and devices for generating maps on a display of, for example, a mobile device, are presented. In one example, a server, such as a map server, may organize a data structure corresponding to a map based, at least in part, on a received query, estimated location, and/or a current route of a mobile device user. Points of interest (POIs) that may be more relevant to a mobile device user may be transmitted from a map server, for example, prior to POIs that may be less relevant. In one example, a plurality of POIs may be rendered on a display of a mobile device. One or more POIs may be emphasized on the display based on one or more criteria.
Abstract:
The subject matter disclosed herein relates to utilizing location information, such as maps, in location determination based on Received Signal Strength Indication (RSSI) and Round-Trip Time (RTT) data. Weighting information can be determined from and/or provided in the location information. The weighting information associated with an area in which a mobile device is located can impact how RSSI and RTT data is weighted in a calculation of the mobile device's location.
Abstract:
Various methods, apparatuses and/or articles of manufacture are provided which may be implemented to support mobile device positioning through the use of adaptive passive scanning and/or adaptive active probing techniques. For example, a mobile device may acquire signals from wireless transceivers, identify wireless transceivers based, at least in part, on the acquired signal(s), determine a received signal strength measurement for each of the wireless transceivers based, at least in part, on the acquired signal(s), and determine a transmission power of a probe signal to be transmitted to at least one of the wireless transceivers based, at least in part, on at least one of the received signal strength measurements.
Abstract:
Methods and apparatuses are provided that may be implemented in a mobile device to determine that the mobile device is located within a particular level of a multi-level physical structure based, at least in part, on a comparison of measured wireless signals and stored measurements of wireless signals.
Abstract:
Described are devices, methods, techniques and systems for locating a portable services access transceiver (PSAT) for use in aiding emergency “911” services. In one implementation, one or more conditions indicative of movement of a PSAT may initiate a process for obtaining a new estimated location of the PSAT. In another implementation, a location of a PSAT may be determined or updated using indoor navigation techniques.
Abstract:
The subject matter disclosed herein relates to systems, methods, apparatuses, devices, articles, and means for updating radio models. For certain example implementations, a method for one or more server devices may comprise receiving at one or more communication interfaces at least one measurement that corresponds to a position of a first mobile device within an indoor environment. At least one radio model that is stored in one or more memories may be updated based, at least in part, on the at least one measurement to produce at least one updated radio model. The at least one radio model and the at least one updated radio model may correspond to the indoor environment. The at least one updated radio model may be transmitted to enable a second mobile device to use the at least one updated radio model for positioning within the indoor environment. Other example implementations are described herein.
Abstract:
Techniques describe opportunistically capturing and tagging images with wireless information by a mobile device. The tagged image may be transmitted to a remote server, such as a crowdsourcing server, where the location at which the image was captured may be determined using visual features from the image. An association between the location and the wireless measurements may be used in building/maintaining a heatmap. In one embodiment, techniques are described for setting camera parameters for opportunistically capturing images and may include receiving at least one signal associated with at least one signal emitting device, determining information associated with the at least one signal emitting device using the at least one signal, setting at least one camera parameter for a camera coupled to the mobile device based on the information associated with the at least one signal emitting device, and capturing one or more images using the at least one camera parameter.
Abstract:
Methods, and computing devices implementing the methods, that enable client computing devises to work in conjunction with a server device to identify and temporarily defend against non-benign applications (e.g., malware, etc.) and other threats before a more permanent solution or defense (e.g., a patch or software upgrade) becomes available and installed on the client computing device. The server device may be configured to receive reports from the client computing devices, receive threat feeds from third-party servers (e.g., threat intelligence servers, etc.), and use information included in the received threat feed and information included in the received reports to analyze, in the server computing device, a software application that is operating on a client device in multiple passes. The server may generate threat scores (e.g., one for each pass, etc.), and the threat scores to the client computing device for use in devising a customized security response.
Abstract:
Various embodiments provide methods, devices, and non-transitory processor-readable storage media enabling network path probing with a communications device by sending probes via a network connection to a STUN server and receiving probe replies. The communications device may increment a counter and transmit a test probe configured to be dropped at the first access point (NAT) causing all subsequent NATs to release their IP/port mappings. The communications device may send another probe to the STUN server and receive a probe reply. The communications device may compare the first and second probe replies to determine whether the final IP addresses within the network path match. By continuously incrementing the counter and querying access points, the communications device may determine the number of access points lay along any given network path. The presence of addition or unexpected numbers of NAT Servers may indicate the presence of a rogue access point.
Abstract:
Embodiments include computing devices, apparatus, and methods implemented by the apparatus for implementing wake lock aware scheduling. The apparatus may receive a wake lock request by a wake lock profiler and acquire wake lock information of a wake lock event associated with the wake lock request. The wake lock information may include a wake lock time parameter. The apparatus may send a hint having the wake lock time parameter. The apparatus may receive the hint, determine whether ready jobs can execute during the wake lock event, and send a request for permission to schedule the ready jobs for execution during the wake lock event in response to determining that the ready jobs can execute during the wake lock event.