Abstract:
A method for fabricating a low temperature polysilicon thin film transistor incorporating a multi-layer channel passivation stack, and for activating dopant ions in a polysilicon gate in the TFT structure has been described. In the method, a multi-layer channel passivation stack consisting of a first insulating material layer, a metal layer and a second insulating material layer are first deposited on a polysilicon gate to shield a channel region in the gate during a laser irradiation process for activating the dopant ions in the gate. Any damages to the channel region of the polysilicon gate by the laser irradiation or the rapid thermal annealing step can be avoided, as well as the dopant impurity out-diffusion and lateral diffusion problems.
Abstract:
One aspect of the present invention relates to a photovoltaic cell. In one embodiment, the photovoltaic cell includes a first conductive layer, an N-doped semiconductor layer formed on the first conductive layer, a first silicon layer formed on the N-doped semiconductor layer, a nanocrystalline silicon (nc-Si) layer formed on a first silicon layer, a second silicon layer formed on the nc-Si layer, a P-doped semiconductor layer on the second silicon layer, and a second conductive layer formed on the P-doped semiconductor layer, where one of the first silicon layer and the second silicon layer is formed of amorphous silicon, and the other of the first silicon layer and the second silicon layer formed of polycrystalline silicon.
Abstract:
A method for fabricating a TFT array substrate including the following steps is provided. A substrate having a pixel region and a photosensitive region is provided. A first patterned conductive layer is formed on the substrate, wherein the first patterned conductive layer includes a gate electrode disposed in the pixel region and a first electrode disposed in the photosensitive region, and a photosensitive dielectric layer is formed on the first electrode. A gate insulation layer is formed to cover the gate electrode, the photosensitive dielectric layer and the first electrode. A patterned semiconductor layer is formed on the gate insulation layer above the gate electrode. A source electrode and a drain electrode are formed on the patterned semiconductor layer at two sides of the gate electrode, wherein the gate electrode, the source electrode, and the drain electrode constitute a TFT. A second electrode is formed on the photosensitive dielectric layer.
Abstract:
A manufacturing method of a thin film transistor array substrate is provided. In the method, a substrate having a display region and a sensing region is provided. At least a display thin film transistor is formed in the display region, a first sensing electrode is formed in the sensing region, and an inter-layer dielectric layer is disposed on the substrate, covers the display thin film transistor, and exposes the first sensing electrode. A patterned photo sensitive dielectric layer is then formed on the first sensing electrode. A patterned transparent conductive layer is subsequently formed on the substrate, wherein the patterned transparent conductive layer includes a pixel electrode coupled to the corresponding display thin film transistor and includes a second sensing electrode located on the patterned photo sensitive dielectric layer. A manufacturing method of a liquid crystal display panel adopting the aforementioned thin film transistor array substrate is also provided.
Abstract:
A capacitance difference detecting circuit includes a control circuit, for generating a control signal according to a first voltage and a second voltage; a first capacitor to be detected; a second capacitor to be detected; a first constant capacitor, having a terminal coupled to the first terminal of the first capacitor to be detected and the first input terminal; a second constant capacitor, having a terminal coupled to the first terminal of the second capacitor to be detected and the second input terminal; a voltage control unit, cooperating with the first capacitor to be detected, the second capacitor to be detected, the first constant capacitor and the second constant capacitor to control the first voltage and the second voltage. The voltage control unit is an adjustable capacitor and a capacitance value of the adjustable capacitor is controlled by the control signal.
Abstract:
A buffer layer for promoting electron mobility. The buffer layer comprises amorphous silicon layer (a-Si) and an oxide-containing layer. The a-Si has high enough density that the particles in the substrate are prevented by the a-Si buffer layer from diffusing into the active layer. As well, the buffer, having thermal conductivity, provides a good path for thermal diffusion during the amorphous active layer's recrystallization by excimer laser annealing (ELA). Thus, the uniformity of the grain size of the crystallized silicon is improved, and electron mobility of the TFT is enhanced.
Abstract:
A thin-film solar cell includes a body and a polymer layer. The body includes a first electrode layer, a photoelectric conversion layer, and a second electrode layer, and the polymer layer includes a hardening material and an interface material. The photoelectric conversion layer is disposed between the first electrode layer and the second electrode layer, and the polymer layer surrounds the photoelectric conversion layer, in which the interface material is used for bonding to the hardening material and the photoelectric conversion layer respectively. Therefore, the thin-film solar cell may reduce the Staebler-Wronski Effect generated by the photoelectric conversion layer in the photoelectric conversion procedure. Accordingly, the photoelectric conversion efficiency is improved.
Abstract:
A thin-film solar cell and a method for manufacturing the same are presented, in which the dopant concentration turns low in a sloping way. The solar cell includes a substrate, a first contact region, a photoelectric conversion layer, and a second contact region. The first contact region a photoelectric conversion layer, and a second contact region are disposed on the substrate. At least one of the first contact region and the second contact region contains an N-type dopant, and the concentration of the N-type dopant is decreased gradually in a direction towards the photoelectric conversion layer. Through the thin-film solar cell and the method for manufacturing the same, the conversion efficiency of the solar cell is improved, and the thin-film solar cell and the manufacturing method are capable of being integrated with an existing manufacturing process of a solar cell, thereby simplifying the manufacturing process and reducing the cost.
Abstract:
In one aspect of the present invention, a photovoltaic panel includes a substrate, a reflective layer formed on the substrate, a first conductive layer formed on the reflective layer, an active layer formed on the first conductive layer, and a second conductive layer formed on the active layer. The reflective layer has an index of refraction and a thickness such that the reflectance spectrum of the photovoltaic device for light incident on the substrate has a maximum in a selected wavelength range in the visible spectrum.
Abstract:
A solar cell module includes a substrate having a thin-film layer patterned in a manner to form with a split window and a solar cell disposed on the substrate. The solar cell includes plurality of material layers and a plurality of split ways corresponding to the material layers. The scope of the split window is constituted by at least one of the split ways.