Abstract:
A membrane electrode assembly includes a cation exchange membrane electrode assembly and an anion exchange membrane electrode assembly. The cation exchange membrane includes a cation exchange membrane, a first cathode electrode disposed on the cation exchange membrane, and a first anode electrode disposed under the cation exchange membrane. The anion exchange membrane electrode assembly includes an anion exchange membrane, a second cathode electrode disposed on the anion exchange membrane, and a second anode electrode disposed under the anion exchange membrane. The cation exchange membrane and the anion exchange membrane partially contact each other, and the first cathode electrode, the first anode electrode, the second cathode electrode, and the second anode electrode do not contact one another.
Abstract:
Disclosed are a method for preparing a pure isophthalaldehyde bisulfite adduct free from impurities through a specific purification process, and use thereof as a starting material for polymerizing polybenzimidazole under a mild condition. According to the present disclosure, it is possible to obtain a pure isophthalaldehyde bisulfite adduct free from impurities, such as unreacted materials or byproducts. In addition, it is possible to accomplish industrial mass production of a high-molecular weight polybenzimidazole by using the adduct as a starting material for polymerizing polybenzimidazole under a mild condition in an organic solvent.
Abstract:
Disclosed are a reversible fuel cell oxygen electrode in which IrO2 is electrodeposited and formed on a porous carbon material and platinum is applied thereon to form a porous platinum layer, a reversible fuel cell including the same, and a method for preparing the same. According to the corresponding reversible fuel cell oxygen electrode, as the loading amounts of IrO2 and platinum used in the reversible fuel cell oxygen electrode can be lowered, it is possible to exhibit excellent reversible fuel cell performances (excellent fuel cell performance and water electrolysis performance) by improving the mass transport of water and oxygen while being capable of reducing the loading amounts of IrO2 and platinum. Further, it is possible to exhibit a good activity of a catalyst when the present disclosure is applied to a reversible fuel cell oxygen electrode and to reduce corrosion of carbon.
Abstract:
Disclosed is a carbon support for a fuel cell catalyst that supports a metal. The carbon support includes a conductive carbon support and nitrogen atoms doped into the conductive carbon support. Also disclosed is a method for preparing the carbon support. Also disclosed is a catalyst including the carbon support. The catalyst has greatly improved degradation resistance compared to conventional catalysts for fuel cells. In addition, the catalyst is not substantially degraded even when applied to a single cell.
Abstract:
Disclosed is a non-precious metal based water electrolysis catalyst represented by CoX/C (X is at least one selected from the group consisting of P, O, B, S and N) for evolution of hydrogen and oxygen at a cathode and anode, respectively, at the same time, the catalyst including a cobalt-containing compound fixed to a carbon carrier.
Abstract:
Provided are a hydroxyl group-containing sulfonated polyethersulfone copolymer, a method for preparing the same, a polymer electrolyte membrane for fuel cell, and a membrane electrode assembly including the same. More particularly, provided are a hydroxyl group-containing sulfonated polyethersulfone electrolyte membrane and a membrane electrode assembly including the same, which are applied to a fuel cell to provide significantly higher ion conductivity as compared to the sulfonated polymer electrolyte membranes according to the related art. The hydroxyl group-containing sulfonated polyethersulfone copolymer electrolyte membrane shows significantly higher ion conductivity under various temperature and humidity conditions as compared to the sulfonated polymer electrolyte membranes according to the related art. Therefore, it is expected that the hydroxyl group-containing sulfonated polyethersulfone copolymer substitutes for expensive fluoropolymer electrolyte membranes such as Nafion.
Abstract:
The present disclosure relates to a method and an apparatus for preparing nanosized metal or alloy nanoparticles by depositing metal or alloy nanoparticles with superior size uniformity on the surface of a powder as a base material by vacuum deposition and then dissolving or melting the base material using a solvent or heat. The method solves the problems of the existing expensive multi-step synthesis method based on chemical reduction and allows effective synthesis of metal or alloy nanoparticles with very uniform size and metal or alloy catalyst nanoparticles supported on carbon at low cost.
Abstract:
Disclosed herein is a technique for synthesizing chiral magnetic nanocoils using an electrodeposition technique, which can be used to fabricate magnetic nanosensors capable of generating an electric field by strongly reacting to an external magnetic field, such as Faraday's law of electromagnetic induction at the nanoscale, depending on the coil shape of the nanostructure. In accordance with one embodiment, a method of synthesizing a chiral magnetic nanocoil may include generating a primary particle composed of metal ions by applying an external electric field, binding a chiral molecule to a surface of the generated primary particle, and controlling an assembly direction of a next primary particle by the bound chiral molecule.
Abstract:
The present disclosure relates to antioxidant for a polymer electrolyte membrane fuel cell electrode catalyst, which includes cerium hydrogen phosphate (HCe2(PO4)3(H2O)) in the form of a nanofiber, and an electrode and a membrane-electrode assembly including the same. The electrode for a polymer electrolyte membrane fuel cell of the present disclosure, wherein the antioxidant is dispersed, can improve the mechanical strength of an electrode catalyst layer and can minimize deterioration of chemical durability even after long-term operation. And, a fuel cell including the same can exhibit high output performance and can operate stably even after long-term operation.
Abstract:
Disclosed are a catalyst electrode for a fuel cell, a method for fabricating the catalyst electrode, and a fuel cell including the catalyst electrode. The presence of an ionomer-ionomer support composite in the catalyst electrode prevents the porous structure of the catalyst electrode from collapsing due to oxidation of a carbon support to avoid an increase in resistance to gas diffusion and can stably secure proton channels. The presence of carbon materials with high conductivity is effective in preventing the electrical conductivity of the electrode from deterioration resulting from the use of a metal oxide in the ionomer-ionomer support composite and is also effective in suppressing collapse of the porous structure of the electrode to prevent an increase in resistance to gas diffusion in the electrode. Based on these effects, the fuel cell exhibits excellent performance characteristics and prevents its performance from deteriorating during continuous operation.