Abstract:
An oscillator has an oscillator which comprises a first variable capacitor to adjust capacitance based on a first signal and a second variable capacitor to adjust capacitance, generates an oscillation signal having a frequency in accordance with the capacitance of the first variable capacitor and the second variable capacitor, an integer phase detector to detect an integer phase of the oscillation signal, a fractional phase detector to detect a fractional phase of the oscillation signal, a phase error generator to generate a fourth signal indicating a phase error of the oscillation signal, a first filter to extract the first signal in a predetermined frequency band, included in the fourth signal, and to output the first signal, and a second filter to extract the second signal in a predetermined frequency band, included in the fourth signal, and to output the second signal.
Abstract:
A time to digital converter has a counter to measure the number of cycles of a first signal, a first phase difference detector to generate a phase difference signal having a pulse width corresponding to a phase difference, a first capacitor to be charged with an electric charge, a second capacitor including capacitance N times the capacitance of the first capacitor, the N being a real number larger than 1, a comparator to compare a charge voltage of the first capacitor and a charge voltage of the second capacitor, a first charge controller to continue to charge the second capacitor until the comparator detects that the charge voltage of the second capacitor has reached the charge voltage of the first capacitor or more, and a first phase difference arithmetic unit to operate the phase difference between the first signal and the second signal.
Abstract:
According to one embodiment, an electronic apparatus includes a first avalanche photo diode, a second avalanche photo diode, a first pulse circuit, a second pulse circuit, a first waveform shaping circuit, a second waveform shaping circuit and an adder. The first pulse circuit is configured to shape a signal of the first avalanche photo diode to a first pulse. The second pulse circuit is configured to shape a signal of the second avalanche photo diode to a second pulse. The first waveform shaping circuit is configured to shape the first pulse to a third pulse having a narrower frequency bandwidth than that of the first pulse. The second waveform shaping circuit is configured to shape the second pulse to a fourth pulse having a narrower frequency bandwidth than that of the second pulse. The adder is configured to add the third pulse and the fourth pulse.
Abstract:
An analog-to-digital converter has a switched capacitor comprising a capacitor to perform charging and discharging by switching a switch, the switched capacitor varying a charge amount of the capacitor in accordance with a frequency of an oscillation signal in accordance with a differential signal between an input signal and a feedback signal, capacitance of the capacitor, and a predetermined bias voltage, a feedback signal generator to generate the feedback signal based on an output signal of the switched capacitor, and a digital converter to generate a digital signal by digital conversion of the input signal based on the oscillation signal.
Abstract:
A radio communication device has an analog control loop unit to generate an analog control signal, a digital control loop unit which has a frequency determined with the frequency of a reference signal and a predetermined frequency setting code signal, a voltage controlled oscillator to generate the voltage control oscillation signal, a data slicer to generate a digital signal obtained by digitally demodulating the reception signal, an automatic offset controller to generate a correction signal, a setting code adjuster to adjust the frequency setting code signal, based on the correction signal, and a direct-current level adjuster to adjust a direct-current level of the digital control signal, based on the correction signal. The data slicer compares the digital control signal adjusted by the direct-current level adjuster, with the threshold value.
Abstract:
A receiver has an oscillator to output an oscillation signal, a receiver to perform reception processing of a reception signal, a phase frequency detector to output a first signal in response to a phase and a frequency of the oscillation signal so as to generate a second signal indicating a reference phase, a differentiator to generate a third signal being a difference between the first signal and the second signal, an oscillator controller to generate a fourth signal for controlling a phase and a frequency of the oscillator, a phase initializer to output an initialization signal for synchronizing a phase of the second signal with a phase of the first signal, a trigger signal generator to output a trigger signal indicating timing with which the phase initializer outputs the initialization signal, and a power supply controller to control whether to supply a power supply voltage.
Abstract:
A phase locked loop has an integer phase detector to detect an integer phase by measuring a cycle number, a fractional phase detector to detect a fractional phase of smaller than one cycle between a reference signal and the oscillation signal, a frequency error generator to generate a frequency error signal between the reference signal and the oscillation signal, a glitch corrector to correct the frequency error signal to generate and output a glitch-corrected signal and the frequency error signal, a phase error generator to generate a phase error by integrating an output signal of the glitch corrector, an oscillator controller to control an oscillation frequency of the oscillation signal, and a synchronous detector to detect whether a phase of the reference signal and a phase of the oscillation signal are in an phase-lock state, and to stop detection of the integer phase when the phase-lock state is detected.
Abstract:
A wireless communication device has an analog control loop circuitry that generates an analog control signal to adjust a phase of a voltage controlled oscillation signal, in accordance with a phase of a reception signal, a digital control loop circuitry that generates a digital control signal having a frequency determined by a frequency of a reference signal and a predetermined frequency setting code signal and having a phase opposite to a phase of the analog control signal, a voltage controlled oscillator that generates the voltage controlled oscillation signal, on the basis of the analog control signal and the digital control signal, and a data slicer that generates a digital signal obtained by digital demodulation of the reception signal, on the basis of a comparison result of the digital control signal and a predetermined threshold value.
Abstract:
In one embodiment, a current amplifier circuit includes a first transistor, a first resistor, a second transistor, a second resistor, a first passive element, and a control circuit. The first transistor has a first terminal, a second terminal, and a control terminal. The first resistor has one end connected to the first terminal of the first transistor. The second transistor has a first terminal, a second terminal, and a control terminal. The second resistor has one end connected to the first terminal of the second transistor. The first passive element is connected between the first terminals of the first transistor and the second transistor. The control circuit controls at least one of voltage at the control terminals of the first transistor and the second transistor such that the voltage at the other end of the first resistor becomes equal to the voltage at the other end of the second resistor.