Abstract:
A method includes receiving at least two space-time coded signals from an antenna system associated with a first station, determining complex channel state information based on the received space-time coded signals, and sending the complex channel state information to the first station. In an alternative embodiment, a method includes transmitting at least two space-time coded signals in respective beams of a multi-beam antenna array, measuring a channel impulse response for each space-time coded signal at a second station, and sending an indicia of a selected set of least attenuated signals from the second station to the first station. The multi-beam antenna array is associated with a first station. The beams transmit a signature code embedded in each respective space-time coded signal, and the signature codes are orthogonal so that the second station can separate and measure the channel impulse response corresponding to each space-time coded signal.
Abstract:
A multi-user receiver which uses at least two antenna elements and in which the influence of interference is reduced, the receiver comprises: means (200) for pre-filtering a wideband antenna signal, the pre-filtering means being determined on the basis of a spatial covariance matrix estimate, which spatial covariance matrix estimate is obtained from wideband antenna signals by sampling, arranging sampled values into a signal vector and by multiplying the signal vector by its conjugate transpose vector, means (210, 218) for removing the whitening from signals of predetermined users by using an inverse matrix of the matrix used in the whitening filter, means (202, 204, 206, 208, 210) for performing multi-path combining and multi-antenna combining.
Abstract:
A method for determining weight factors of antenna beams, the method comprising using at least one directional antenna beam implemented with an antenna array to establish a radio link, forming a radio cell with the antenna beam, dividing the radio cell into at least two different cells by dividing the antenna beam, selecting weight factors of antenna elements of the antenna array such that the antenna element specific sums of weight factors of a radio cell formed with the antenna array and corresponding weight factors of at least one, second radio cell formed with the same antenna array are at least substantially equal within predetermined limits in order to achieve a predetermined power balance between different antenna elements. (FIG. 7)
Abstract:
A method and an apparatus for implementing the method for providing transmission of an uninterrupted pilot signal covering the whole antenna sector. The method uses at least two primary pilot signals orthogonal relative to each other in a radio system comprising adjacent directional antenna beams. In the method, primary pilot signals are transmitted in main antenna beams of the antenna pattern in such a way that adjacent main antenna beams have primary pilot signals orthogonal relative to each other, and the widths and directions of the antenna beams are adjusted in such a way that the beams having the same primary pilot signal do not overlap.
Abstract:
In the described system, one or more base stations transmit a signal to a mobile station. The signal is transmitted using polarisation diversity, whereby the signal is transmitted in one direction using two signal beams, each signal beam being differently polarised. A method of beam-hoping may be employed whereby the polarisation of the transmitted beams during hand off is varied according to predefined sequence. The sequence may be determined according to the data loading within the respective transmission cells. Also disclosed is a method of soft or softer hand off within a wireless communication system where the total number of signal beams transmitted from two base stations to a single mobile station during hand off is kept constant.
Abstract:
A method includes receiving at least two space-time coded signals from an antenna system associated with a first station, determining complex channel state information based on the received space-time coded signals, and sending the complex channel state information to the first station. In an alternative embodiment, a method includes transmitting at least two space-time coded signals in respective beams of a multi-beam antenna array, measuring a channel impulse response for each space-time coded signal at a second station, and sending an indicia of a selected set of least attenuated signals from the second station to the first station. The multi-beam antenna array is associated with a first station. The beams transmit a signature code embedded in each respective space-time coded signal, and the signature codes are orthogonal so that the second station can separate and measure the channel impulse response corresponding to each space-time coded signal.
Abstract:
A method of directional radio communication between a first station and a second station comprises the steps of transmitting signals from the second station to the first station via a radio channel. At least one parameter indicative of the speed of change in the radio channel is measured. A rate with which the second station should send signals to the first station is determined from the at least one parameter and the second station sends signals to the first station with at least the rate.
Abstract:
The invention relates to a method of transmitting data in a communications system. The invention comprises: receiving from a user an uplink signal using multiple narrow antenna beams; measuring beam-specific pilot signal powers from the uplink signal for all the beams; and using the measured pilot signal powers to determine which one or ones of the downlink beams is to be used for a downlink signal for the user.
Abstract:
A radio channel simulation system comprises a plurality of input buses for receiving a beam-specific transmit signal. A transformation module transforms a channel model from antenna domain to beam domain by using a transformation algorithm and beam forming weights. The channel model represented in the beam domain is inputted into a processing module which processes the beam-specific transmit signals according to the channel model represented in the beam domain.
Abstract:
An apparatus of a multi-antenna telecommunication system includes a beam forming unit configured to form at least two antenna beams, and a signal feeding unit connected to the beam forming unit and configured to feed beam-specific data streams to the beam forming unit. The beam-specific data streams are allocated to one and the same transceiver of the wireless telecommunication system, and each data stream includes independently and separately encoded data signals.