Abstract:
Wireless devices, methods, and computer-readable media for transmitting and receiving high-efficiency signal fields. An access point (AP) may include circuitry configured to determine a high-efficiency signal (HE-SIG) field for each of a plurality of sub-channels, wherein each HE-SIG field includes a common part and a sub-channel specific part. The circuitry may be further configured to transmit, in accordance with orthogonal frequency division multiple access (OFDMA), on each of the plurality of sub-channels, a corresponding HE-SIG field as a preamble to a physical layer convergence protocol (PLCP) protocol data unit (PPDU), wherein the sub-channel specific part of the corresponding HE-SIG field includes a resource map field that enables a HEW device to determine which portion of the PPDU to demodulate, and wherein the common portion includes information of a format of the PPDU. A HEW device may include circuitry configured to demodulate a PPDU based on a HE-SIG field.
Abstract:
Embodiments of an access point (AP), user station (STA), and method for spatial modulation orthogonal frequency division multiplexing (SM-OFDM) communication in a wireless network are generally described herein. The AP may transmit an SM-OFDM signal that comprises multiple OFDM signals. The SM-OFDM signal may be transmitted in channel resources that comprise multiple sub-carriers and the OFDM signals may be based at least partly on data symbols for used data portions of the sub-carriers. The used data portions may be based on a first portion of encoded bits and the data symbols for the used data portions may be based on a second portion of the encoded bits. In some examples, the used data portions of the sub-carriers may be different for at least some of the OFDM signals.
Abstract:
Embodiments of a HEW device and method for communicating in a high-efficiency Wi-Fi (HEW) network generally described herein. In some embodiments, an HEW frame may be configured to include an HEW long-training field (HEW-LTF) and the HEW-LTF may include an HEW long-training sequence (HEW-LTS) that is orthogonal on a block-by-block basis to a legacy LTS (L-LTS). The HEW frame may be transmitted as part of a data unit for reception by one or more HEW devices. In some embodiments, an HEW device and method for packet classification is provided. A packet classification may be determined from the HEW-LTF by determining which of a plurality of HEW-LTSs are included in the HEW-LTF.
Abstract:
Wireless devices, methods, and computer readable media are disclosed. A high-efficiency wireless local-area network (HEW) master station is disclosed. The HEW master station may include circuitry. The circuitry may be configured to generate one or more resource allocations of a bandwidth for one or more HEW stations. Each resource allocation for a first portion of the bandwidth may be a multiple of a basic resource allocation or the entire first portion of the bandwidth. There may be only one resource allocation for a second portion of the bandwidth that is at least as large as the first portion of the bandwidth. In some embodiments, each resource allocation for the second portion of the bandwidth may be a multiple of the basic resource allocation or the entire second portion of the bandwidth.
Abstract:
Techniques for packet classification for IEEE 802.11ax capable devices are provided. Specifically, methods are presented, that when taken alone or together, provide a device or group of devices with a means for determining the modulation and coding scheme used, through robust bit indication in a WLAN 802.11ax frame.
Abstract:
Embodiments of a high-efficiency Wi-Fi (HEW) device and method for HEW communicating are generally described herein. In some embodiments, an HEW frame is configured with a reduced signal field. The HEW frame may include a HEW signal field (HEW SIG-A1) which may include a single bit to indicate whether the HEW frame is a single user (SU) HEW frame or a multi-user (MU) HEW frame. A legacy signal field (L-SIG) is not included in the HEW frame. Rate information may be included in one or more signal fields that follow the HEW SIG-A1 and length information may be included in either the HEW SIG-A1 or the one or more signal fields that follow the HEW SIG-A1. The HEW frame may improve overall system efficiency, particularly in high-density deployment situations.
Abstract:
Methods, apparatuses, and computer readable media for signaling high-efficiency packet formats using a legacy portion of the preamble in wireless local-area networks are disclosed. A high-efficiency (HE) wireless local area network (HEW) device including circuitry is disclosed. The circuitry may be configured to generate a HE packet comprising a legacy signal field (L-SIG) followed by one or more HE signal fields, and configure the L-SIG to signal to a second HEW device either a first packet format of the HE packet or a second packet format of the HE packet, where a length of the L-SIG modulo 3 is used to signal the first packet format or the second packet format. The circuitry may be configured to generate a duplicated L-SIG field with a polarity difference to indicate a third packet configuration of the HE packet or a fourth packet configuration of the HE packet.
Abstract:
Wireless devices, methods, and computer readable media for synchronization in a wireless local-area network. A method on a wireless communication device may include tuning to a first subchannel based on a schedule received from an access point (AP) the schedule to indicate that the HEW device is assigned to the first subchannel. The method may further include determining a target beacon receive time and tuning to a second subchannel to receive the target beacon at the target beacon receive time. The method may further include receiving the target beacon on the second subchannel and tuning back to the first subchannel. A method on an AP for synchronization may include transmitting information that indicates a target beacon receive time on a subchannel. The method may include not transmitting to a wireless communication device operating on a second subchannel for a period of time before the target beacon receive time, and transmitting a target beacon on a first subchannel at the target beacon receive time.
Abstract:
Embodiments of a user station (STA), access point (AP) and methods for operating a STA and AP in a wireless network are general described herein. In some embodiments, the STA includes processing circuitry and physical layer (PHY) circuitry to detect a Dedicated Short Range Communications Service (DSRC) transmission on a wireless communication channel in a frequency spectrum comprising 5 GHz. The STA can also transmit a report message to report the DSRC transmission responsive to detecting DSRC transmission. Other embodiments and methods are also described.
Abstract:
Apparatuses, computer readable media, and methods for indicating a resource allocation are disclosed. An apparatus of a high-efficiency wireless local area network (HEW) master station is disclosed. The HEW master station includes circuitry configured to generate a resource allocation for HEW stations, where the resource allocation includes a group identification and an index into a table. The circuitry is further configured to transmit the resource allocation to the HEW stations. The table may be a permutation table that indicates a sub-channel of a bandwidth for each of the HEW stations. The HEW master station may be configured to operate in accordance with orthogonal frequency division multi-access (OFDMA). The resource allocation may be part of a trigger frame that includes a duration for an uplink or downlink transmission opportunity, and the circuitry may be further configured to transmit data to the HEW stations in accordance with the resource allocation.