Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Fine Timing Measurement (FTM). For example, an apparatus may include circuitry and logic configured to cause an initiator station to process an FTM message received from a responder station, the first FTM message comprising a first field comprising a first Message Authentication Code (MAC); to process a second FTM message comprising the first field, a second field, and an FTM time value corresponding to the first FTM message, the first field comprising a second MAC, and the second field comprising the first MAC; and to determine whether or not to use the FTM time value for an FTM measurement, based on an authentication of the responder station according to the second MAC.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of performing a Time of Flight (ToF) measurement. For example, a first wireless device may include a radio to communicate a discovery frame with a second wireless device, the discovery frame including an initiator indication to indicate whether a sender of the discovery frame is to be an initiator or a responder of a Time of Flight (ToF) measurement procedure, and availability information to indicate a wireless channel and one or more time intervals; and a controller to perform the ToF measurement procedure with the second wireless device over the wireless channel during the one or more time intervals, the controller be either the initiator or responder of the ToF measurement according to the initiator indication.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of determining a Time Synchronization Function (TSF) based on Fine Timing Measurement (FTM) messages. For example, a wireless station may be configured to determine a first TSF value of a local TSF of the wireless station at arrival of a first FTM message from a responder station; to determine a second TSF value of the local TSF at arrival of a second FTM message from the responder station, the second FTM message including a first Time of Departure (TOD) value of the first FTM message; to process a third FTM message from the responder station, the third FTM message including a second TOD value of the second FTM message; and to apply to the local TSF a TSF correction based at least on the first TSF value, the second TSF value, the first TOD value, and the second TOD.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Multi User (MU) resource allocation. For example, an apparatus may include circuitry and logic configured to cause a wireless station to transmit a short feedback trigger frame including a first allocation of opportunities for short feedback from associated stations, and a second allocation of opportunities for short feedback from unassociated stations; to process a plurality of short feedbacks from a plurality of stations according to the first and second allocations, the plurality of short feedbacks to indicate uplink resource requests; based on the plurality of short feedbacks, to transmit a MU trigger frame to allocate uplink resources to the plurality of stations; and to process uplink transmissions from the plurality of stations according to the uplink resources.
Abstract:
Certain embodiments herein relate to efficient location determination by wireless stations using one-to-many communication techniques. Location determination can be facilitated by using one-to-many communication techniques to provide for efficient timing message exchange between an initiating wireless station and one or more responding wireless stations. Based at least in part on the time-of-flight of the exchanged messages, the initiating wireless station can determine its distances from the respective one or more responding wireless stations. Based at least in part on the determined distances, the wireless initiating station can determine its location using trilateration or multilateration techniques.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of determining a Time Synchronization Function (TSF) based on Fine Timing Measurement (FTM) messages. For example, a wireless station may be configured to determine a first TSF value of a local TSF of the wireless station at arrival of a first FTM message from a responder station; to determine a second TSF value of the local TSF at arrival of a second FTM message from the responder station, the second FTM message including a first Time of Departure (TOD) value of the first FTM message; to process a third FTM message from the responder station, the third FTM message including a second TOD value of the second FTM message; and to apply to the local TSF a TSF correction based at least on the first TSF value, the second TSF value, the first TOD value, and the second TOD.
Abstract:
This disclosure describes systems, methods, and devices related to a trigger-based null data packet (NDP) for channel sounding system. A device may send a trigger frame to a group of station devices, the group of station devices including a first station device, the trigger frame indicating a high efficiency (HE) long training field (HE-LTF) mode and a guard interval duration. The device may identify a HE trigger-based (TB) null data packet (NDP) received from the first station device, the HE TB NDP including a first packet extension field, wherein the HE TB NDP is associated with the HE-LTF mode and the guard interval duration indicated in the trigger frame. The device may send a downlink NDP including a second packet extension field, a second HE-LTF mode, and a second guard interval duration. The device may determine channel state information based on HE TB NDP received from the first station device.
Abstract:
Methods, apparatuses, and computer readable media for location measurement reporting in a wireless network are disclosed. An apparatus of an initiator station (ISTA), where the apparatus comprises processing circuitry configured to decode a null data packet (NDP) announce (NDPA) frame from an initiator station (ISTA), the NDPA frame comprising a dialog token and an identification of a temporary key. The processing circuitry may be further configured to decode a first NDP from the ISTA, the NDP comprising first long training fields (LTFs), and wherein the NDP is received on a channel and encode a second NDP, the second NDP comprising second LTFs, wherein the second LTFs are determined based at least on the temporary key. The processing circuitry may be further configured to encode a location measurement report (LMR), the LMR comprising the dialog token and an indication of the temporary key.
Abstract:
Methods, apparatus, and computer-readable media are described to encode a trigger frame for a second station (STA2). A first sounding frame for the STA2 is generated. The first timestamp is associated with a transmission of the first sounding frame. A second sounding frame from the STA2 based upon the first sounding frame is decoded. The second sounding frame includes a holding time indication associated with a second timestamp and a third timestamp. A fourth timestamp is associated with receiving the second sound frame. The holding time indication is protected. A round-trip time is calculated based upon the first timestamp, the holding time indication, and the fourth timestamp.
Abstract:
This disclosure describes systems, methods, and devices related to enhanced location service negotiation. A device may identify a neighbor report frame received from one or more coordinated access points (APs), wherein the neighbor report frame comprises location capability support information. The device may determine a first ranging associated ID (R-AID) associated with the location capability support information. The device may determine a first location measurement with a first coordinated AP of the one or more coordinated APs and a second location measurement with a second coordinated AP of the one or more coordinated APs using the first R-AID.