Abstract:
A method and apparatus for supplying auxiliary power to a peripheral is disclosed. The method includes supplying power from a first USB port of a host device to an input USB port of a USB hub device, supplying power through a downstream USB port of the USB hub device for use by a downstream USB device, supplying auxiliary power through a power output port of the USB hub device for use by a peripheral device that is coupled to an upstream port and supplying power from a second USB port of the host device to the peripheral device. The power received by the peripheral device is sufficient for its operation.
Abstract:
An apparatus comprising a microcontroller configured to (i) send or receive data over one or more data lines when in a first mode and (ii) be programmed through said data lines when in a second mode.
Abstract:
The present invention concerns a method for reducing power consumption in a device, comprising the steps of (A) receiving one or more packets, (B) determining a type of each of the one or more packets and (C) suspending, waking, or partially waking the device in response to a particular type of packet.
Abstract:
Embodiments of the invention describe a method and apparatus used to determine the position of a wiper on a potentiometer without the need for an external ADC. Two capacitors are each connected to an end of a potentiometer, and then are charged or discharged simultaneously by a current source or current sink attached to the wiper of the potentiometer. The time required for each of the capacitors to charge or discharge to a threshold voltage level is measured and subsequently used to determine the position of the wiper on the potentiometer.
Abstract:
An intelligent voltage regulator circuit in accordance with one embodiment of the invention can include a variable voltage generator that is coupled to receive an input voltage. Additionally, the intelligent voltage regulator circuit can include a processing element that is coupled to the variable voltage generator. The processing element can be coupled to receive programming for controlling a characteristic of the intelligent voltage regulator circuit. The processing element can be for dynamically changing the characteristic during operation of the intelligent voltage regulator circuit.
Abstract:
A method may include controlling a display device in at least first mode by varying a correlation between display driver signals applied across display segments within the display device; wherein the display driver signals vary between substantially only two levels, and a display segment is activated when an average voltage magnitude across the segment over a time period exceeds a threshold value.
Abstract:
A programmable power-on reset circuit in accordance with one embodiment of the invention can include a programmable voltage divider. The programmable power-on reset circuit can also include a comparator that is coupled to the programmable voltage divider and that is coupled to receive a reference voltage. Additionally, the programmable power-on reset circuit can include a non-volatile memory that is coupled to the programmable voltage divider, wherein the non-volatile memory can be coupled to receive programming for controlling an output of the programmable voltage divider.
Abstract:
An example wireless device includes a radio receiver to measure a signal quality of a data signal independent of a direct frequency measurement, the signal quality correlated to an offset between a transmitter reference frequency and a receiver reference frequency but not indicative of a direction of the offset. The example wireless device further includes a reference frequency generator to determine from the measured signal quality that a previous adjustment to the receiver reference frequency in a first direction has worsened the signal quality, and responsive to that determination adjust the receiver reference frequency in a second direction that is opposite to the first direction.
Abstract:
A circuit including a first pin connection, a second pin connection, a first diode-switch arrangement and a second diode-switch arrangement. The first diode-switch arrangement is connected in series and configured to allow a current to pass from the second pin connection to the first pin connection. The second diode-switch arrangement is connected in series and configured to allow a current to pass from the first pin connection to the second pin connection. An energized state of the first and second diode-switch arrangements is determined according to a voltage detected on the first or second pin connection.
Abstract:
A non-keyboard computer peripheral device represents itself to a host computer as having a keyboard function in addition to representing its actual function. Keyboard status signals are generated by the host computer in response to a user pressing different keys on an actual keyboard. The peripheral device uses the keyboard status signals to identify different peripheral device operations selected by the user. In one example, a radio receiving device represents itself to the host computer as including the keyboard function. Pressing a button on the receiving device causes the receiving device to send a sequence of keystroke commands to the host computer that cause the host computer to initiate software applications and to display operating instructions to a user. A series of further binding operations are then executed in accordance with the displayed operating instructions.