Abstract:
A programmable system includes a programmable analog system that is reconfigurable to perform various analog operations, and includes a programmable digital system that is reconfigurable to perform various digital operations. The programmable system also includes a microcontroller capable of reconfiguring and controlling the programmable analog system and the programmable digital system. The programmable digital system is configured to control the programmable analog system autonomously of the microcontroller.
Abstract:
A programmable system includes an input/output (I/O) pin that is configurable into multiple operational states. The programmable system further includes a memory device to store configuration data that, when provided to the I/O pin, causes the I/O pin to reconfigure into one of the operational states. When power is supplied to the system, the memory device is configured to provide the configuration data to the I/O pin prior to a system microcontroller becoming operational responsive to the power.
Abstract:
Devices including an audio mechanism and a processing device coupled to display on-screen buttons on a touch-screen display are described. The processing device is configured to detect a conductive object proximate to the touch-screen display and to determine a position of the conductive object on the touch-screen display. The processing device is configured to provide different sounds via the audio mechanism for different ones of the on-screen buttons when the position of the conductive object is determined within the different on-screen buttons to allow detection of a reference location on the touch-screen display.
Abstract:
An integrated circuit in accordance with one embodiment of the invention can include a plurality of storage elements that can be coupled in a first mode and a second mode. The first mode includes the plurality of storage elements being coupled to enable normal operation of the integrated circuit, and the second mode includes the plurality of storage elements being coupled together as a shift register. The integrated circuit also includes a rewritable non-volatile memory and a sleep controller that is coupled to the rewritable non-volatile memory. The sleep controller is for switching the plurality of storage elements between the first mode and the second mode. The sleep controller is for extracting data from the plurality of storage elements in the second mode and storing the data with the non-volatile memory to record the operating state of the plurality of storage elements in the first mode.
Abstract:
An intelligent serial interface circuit in accordance with one embodiment of the invention can include a first communication interface circuit for enabling a first communication protocol. The intelligent serial interface circuit can also include a second communication interface circuit for enabling a second communication protocol. Furthermore, the intelligent serial interface circuit can include a detector circuit coupled to the first communication interface circuit and the second communication interface circuit. The detector circuit can be for automatically detecting a factor that indicates automatically enabling the first communication interface circuit and automatically disabling the second communication interface circuit. The detector circuit can be for detecting a coupling of a pin of the first communication interface circuit that is not used by the second communication interface circuit.
Abstract:
An electronic containment battery includes a battery section and an electronic section that together form a standard battery form factor that allows insertion into conventional electronic devices. In one example, the electronic section can include Radio Frequency (RF) circuitry that enables electronic operations in the electronic containment battery to be communicated or controlled wirelessly. In another example, the electronic section can include wireless charging circuitry that enables the battery section to be wirelessly charged while the EC battery is inserted into the conventional electronic device. In yet another example, the electronic section can include the RF circuitry and the wireless charging circuitry.
Abstract:
A method for locating a conductive object at a touch-sensing surface may include detecting a first resolved location for the conductive object at the touch-sensing surface based on a first scan of the touch-sensing surface, predicting a location for the conductive object, and determining a second resolved location for the conductive object by performing a second scan of a subset of sensor elements of the touch-sensing surface, wherein the subset of sensor elements is selected based on the predicted location of the conductive object.
Abstract:
An apparatus and method for providing an active feedback of a position of a conductive object, manipulated by a user on a sensing device, to allow detection of a reference location on the sensing device by the user. The apparatus may include a sensing device to detect a presence of a conductive object, manipulated by a user on the sensing device, a processing device coupled to the sensing device, the processing device to determine a position of the conductive object on the sensing device, and a feedback mechanism coupled to the processing device to provide an active feedback to the user to allow detection of a reference location on the sensing device by the user.
Abstract:
An intelligent voltage regulator circuit in accordance with one embodiment of the invention can include a variable voltage generator that is coupled to receive an input voltage. Additionally, the intelligent voltage regulator circuit can include a processing element that is coupled to the variable voltage generator. The processing element can be coupled to receive programming for controlling a characteristic of the intelligent voltage regulator circuit. The processing element can be for dynamically changing the characteristic during operation of the intelligent voltage regulator circuit.
Abstract:
A programmable power-on reset circuit in accordance with one embodiment of the invention can include a programmable voltage divider. The programmable power-on reset circuit can also include a comparator that is coupled to the programmable voltage divider and that is coupled to receive a reference voltage. Additionally, the programmable power-on reset circuit can include a non-volatile memory that is coupled to the programmable voltage divider, wherein the non-volatile memory can be coupled to receive programming for controlling an output of the programmable voltage divider.