Abstract:
Display tiles comprising pixel elements on a first surface of a substrate connected by an electrode, a driver located opposite the first surface, and a connector wrapped around an edge surface of the substrate connecting the driver to the pixel elements. Displays comprised of display tiles and methods of manufacturing display tiles and displays are also disclosed.
Abstract:
A substrate for a display article is described herein that includes (a) a primary surface; and (b) a textured region on at least a portion of the primary surface; the textured region comprising: (i) primary surface features, each comprising a perimeter parallel to a base-plane extending through the substrate disposed below the textured region, wherein the perimeter of each of the primary surface features comprises a longest dimension of at least 5 μm; and (ii) one or more sections each comprising secondary surface features having a surface roughness (Ra) within a range of 5 nm to 100 nm. In some instances, an arrangement of the surface features reflect a random distribution. A method of forming the same is disclosed.
Abstract:
An article that includes: a glass-based substrate having opposing major surfaces; a crack mitigating stack disposed on one of the major surfaces; and a scratch-resistant film disposed on the crack mitigating stack that has an elastic modulus greater than or equal to the elastic modulus of the substrate. The stack comprises one or more bi-layers defined by: (a) a first layer comprising an organosilicate material, and (b) a second layer comprising an organosilicate material over the first layer, the first layer having a lower elastic modulus than the elastic modulus of the second layer. The film comprises at least one of a metal-containing oxide, a metal-containing oxynitride, a metal-containing nitride, a metal-containing carbide, a silicon-containing polymer, a carbon, a semiconductor, and combinations thereof. In addition, the article is characterized by an average flexural strength that is at least 70% of an average flexural strength of the substrate.
Abstract:
Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
Abstract:
A coated textured glass article is described herein that comprises: a glass body comprising a first surface; a plurality of polyhedral surface features extending from the first surface; and a coating disposed on the first surface of the body and the plurality of polyhedral surface features. Each of the plurality of polyhedral surface features comprises a base on the first surface and a plurality of facets extending from the base and converging toward one another. The coating comprises a multilayer interference stack.
Abstract:
Described herein are glass articles and methods of making glass articles, comprising a thin sheet and a carrier, wherein the thin sheet and carrier or bonded together using a coating layer, which is preferably an organosiloxane polymer coating layer, and associated deposition methods and inert gas treatments that may be applied on the thin sheet, the carrier, or both, to control van der Waals, hydrogen and covalent bonding between the thin sheet and the carrier. The coating layer bonds the thin sheet and carrier together to prevent a permanent bond at high temperature processing while at the same time maintaining a sufficient bond to prevent delamination during high temperature processing.
Abstract:
A glass article is provided (and methods of making the same) that includes: a glass substrate comprising a thickness and a first primary surface; and a porosity-graded layer that extends from the first primary surface of the substrate to a first depth within the substrate. The first depth is from about 250 nm to about 3000 nm. The porosity-graded layer comprises a plurality of pores having an average pore size from about 5 nm to 100 nm. The article comprises a single-side average reflectance of less than 9% at an incident angle of 60 degrees across a spectrum from 350 nm to 2000 nm. Further, the porosity-graded layer comprises a surface porosity at the first primary surface and a bulk porosity at the first depth, the surface porosity greater than the bulk porosity.
Abstract:
Described herein are articles and methods of making articles, including a first sheet and a second sheet, wherein the thin sheet and carrier are bonded together using a coating layer, preferably a hydrocarbon polymer coating layer, and associated deposition methods and inert gas treatments that may be applied on either sheet, or both, to control van der Waals, hydrogen and covalent bonding between the sheets. The coating layer bonds the sheets together to prevent formation of a permanent bond at high temperature processing while at the same time maintaining a sufficient bond to prevent delamination during high temperature processing.
Abstract:
Described herein are articles and methods of making articles, including a first sheet and a second sheet, wherein the thin sheet and carrier are bonded together using a coating layer, preferably a hydrocarbon polymer coating layer, and associated deposition methods and inert gas treatments that may be applied on either sheet, or both, to control van der Waals, hydrogen and covalent bonding between the sheets. The coating layer bonds the sheets together to prevent formation of a permanent bond at high temperature processing while at the same time maintaining a sufficient bond to prevent delamination during high temperature processing.
Abstract:
A method for treating a flexible plastic substrate is provided herein. The method includes establishing an atmospheric pressure plasma beam from an inert gas using a power of greater than about 90W, directing the plasma beam toward a surface of the flexible polymer substrate, and scanning the plasma beam across the surface of the polymer substrate to form a treated substrate surface.