Abstract:
Provided are a copying apparatus and a user interface method for the same. The user interface method includes displaying a first region which includes information on an original document, and displaying a second region which includes information on virtual copy paper; changing the display of the second region in accordance with an input setting instruction; and when a copy instruction is input, copying the original document in accordance with the display of the second region. According to the present invention, an intuitive interface which even inexperienced users can easily use may be implemented.
Abstract:
Embodiments of the present invention include heterogeneous substrates, integrated circuits formed on such heterogeneous substrates, and methods of forming such substrates and integrated circuits. The heterogeneous substrates according to certain embodiments of the present invention include a first Group IV semiconductor layer (e.g., silicon), a second Group IV pattern (e.g., a silicon-germanium pattern) that includes a plurality of individual elements on the first Group IV semiconductor layer, and a third Group IV semiconductor layer (e.g., a silicon epitaxial layer) on the second Group IV pattern and on a plurality of exposed portions of the first Group IV semiconductor layer. The second Group IV pattern may be removed in embodiments of the present invention. In these and other embodiments of the present invention, the third Group IV semiconductor layer may be planarized.
Abstract:
A semiconductor device includes an inorganic insulating layer on a semiconductor substrate, a contact plug that extends through the inorganic insulating layer to contact the semiconductor substrate and a stress buffer spacer disposed between the node contact plug and the inorganic insulating layer. The device further includes a thin-film transistor (TFT) disposed on the inorganic insulating layer and having a source/drain region extending along the inorganic insulating layer to contact the contact plug. The device may further include an etch stop layer interposed between the inorganic insulating layer and the semiconductor substrate.
Abstract:
Embodiments of the present invention include heterogeneous substrates, integrated circuits formed on such heterogeneous substrates, and methods of forming such substrates and integrated circuits. The heterogeneous substrates according to certain embodiments of the present invention include a first Group IV semiconductor layer (e.g., silicon), a second Group IV pattern (e.g., a silicon-germanium pattern) that includes a plurality of individual elements on the first Group IV semiconductor layer, and a third Group IV semiconductor layer (e.g., a silicon epitaxial layer) on the second Group IV pattern and on a plurality of exposed portions of the first Group IV semiconductor layer. The second Group IV pattern may be removed in embodiments of the present invention. In these and other embodiments of the present invention, the third Group IV semiconductor layer may be planarized.
Abstract:
A CMOS transistor structure and related method of manufacture are disclosed in which a first conductivity type MOS transistor comprises an enhancer and a second conductivity type MOS transistor comprises a second spacer formed of the same material as the enhancer. The second conductivity type MOS transistor also comprises a source/drain region formed in relation to an epitaxial layer formed in a recess region.
Abstract:
The present invention relates to a coating composition for forming an anti-reflective coating layer for a display device, comprising a fluorinated silane with low surface tension, a conductive polymer with antistatic properties, water, and a solvent. Thus, the coating film of the present invention prepared by coating the composition has high anti-reflection, excellent stain resistance to liquid-phase stains such as fingerprints and the solid-phase stains such as dust by controlling the refractive index, surface energy, and conductivity, and thus can be usefully applied to the outermost side of a display device, regardless of the type of substrates such as a Braun tube or a flat display film and the presence of other coating layers such as a hard coating layer and an anti-glare coating layer.