Abstract:
A method and an apparatus have been developed to deposit heteroepitaxial beta-silicon carbide films on silicon using bias-assisted hot filament chemical vapor deposition (BA-HFCVD). The apparatus includes a graphite plate as the carbon source and the silicon substrate as the silicon source. Hydrogen was the only feeding gas to the system.
Abstract:
A luminescent system includes a layer of donor material, an acceptor material and a barrier layer therebetween. The energy transfer between the donor and acceptor is biased to the acceptor layer, by an asymmetric energy transfer efficiency created by the barrier layer. Energy from the donor material is converted into photo-luminescence in the acceptor layer by discouraging photo-luminescence quenching caused by energy backflow.
Abstract:
A conical structure of cubic Boron Nitride (cBN) is formed on a diamond layered substrate. A method of forming the cBN structure includes steps of (a) forming diamond nuclei on a substrate, (b) growing a layer of diamond film on the substrate, (c) depositing a cBN film on said diamond layer, (d) pre-depositing nanoscale etching masks on the the cBN film, and (e) etching the the deposited cBN film. In particular, though not exclusively, the cubic Boron Nitride structure has great potential applications in probe analytical and testing techniques including scanning probe microscopy (SPM) and nanoindentation, nanomechanics and nanomachining in progressing microelectromechanical system (MEMS) and nanoelectyromechanical system (NEMS) devices, field electron emission, vacuum microelectronic devices, sensors and different electrode systems including those used in electrochemistry.
Abstract:
A multilayer coating (MLC) is composed of two chemically different layered nanocrystalline materials, nanodiamond (nanoD) and nano-cubic boron nitride (nono-cBN). The structure of the MLC and fabrication sequence of layered structure are disclosed. The base layer is preferably nanoD and is the first deposited layer serving as an accommodation layer on a pretreated substrate. It can be designed with a larger thickness whereas subsequent alternate nano-cBN and nanoD layers are typically prepared with a thickness of 2 to 100 nm. The thickness of these layers can be engineered for a specific use. The deposition of the nanoD layer, by either cold or thermal plasma CVD, is preceded by diamond nucleation on a pretreated and/or precoated substrate, which has the capacity to accommodate the MLC and provides excellent adhesion. Nano-cBN layers are directly grown on nanodiamond crystallites using ion-assisted physical vapor deposition (PVD) and ion-assisted plasma enhanced chemical vapor deposition (PECVD), again followed by nanodiamond deposition using CVD methods in cycles until the intended number of layers of the MLC is obtained.
Abstract:
A simple chemical technique has been developed to grow large quantity of carbon nanostructures, including carbon nanotubes, hydrocarbon nanotubes and carbon nanoonions, in the organic solution at ambient (room) temperature and atmospheric pressure using silicon nanostructures (nanowires, nanodots, ribbons, and porous silicon) as starting materials. These CNT and CNO have the lattice d-spacing from 3.4 Å to 5 Å.
Abstract:
Compounds of formula [I] wherein each R1 to R8 is independently selected from the group consisting of halogen atoms, cyano, isocyano, mercapto, amino, carbonyl, carboxy, sulfone, nitro and hydroxy groups, and optionally substituted alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, aryl, alkoxy, aryloxy, alkylamino, arylamino, alkylarylamino, amide, alkylthio, arylthio, alkoxy carbonyl, siloxy, cyclic hydrocarbon or heterocyclic groups; each x is independently zero, one, two or three; each y is independently zero or one; and each z is independently zero, one, two or three are useful in organic electroluminescence devices. Such compounds are disclosed herein, as well as organic electroluminescence devices using the compounds in the emissive layer.
Abstract:
The present invention deals with the generation of sharp single crystal diamond tips and the arrays of these tips, and their fabrication technology. The invention combines the deposition of synthetic diamond films with reactive etching processes. Upon the diamond orientation prepared and reactive etching environment with considerable directivity of ions, single crystal diamond tips with different apical angles can be fabricated. Very sharp diamond tips with an apical angle of no more than about 28° and a tip radius smaller than 50 nm are fabricated on pyramidal-shaped [001]-textured diamond films by subsequent reactive etching., The technology is based on selective etching of sp2- and sp3- hybridized carbons by the activated constituents of an etching environment, in particular based on atomic hydrogen, in a way similar to ion bombardment, which contributes to overall etching and local conversion of diamond to graphitic phase promoting further etching with chemically activated species. This novel method is capable of forming diamond tip arrays over large areas with great uniformity and high reproducibility. The diamond tips prepared are single diamond crystals with their [001] axes parallel each other and normal to the substrate surface. The invented technology enables the control of the apical angle, radius and density of the diamond tips.
Abstract:
There are diclosed rare-earth metal containing electron-injecting electrodes which are particularly effective for use with organic LED devices used in electroluminescent structures and which may in particular be formed as transparent electrodes for use in transparent or surface emitting OLEDs.
Abstract:
Organic electroluminescence devices are described, each of which comprises an anode, a cathode, a luminescent layer, at least one hole-transporting layer disposed between the anode and the luminescent layer, at least one electron-transporting layer disposed between the cathode and the luminescent layer, and a substrate present on either the anode or cathode. The luminescent layer in the devices uses as red-emitting materials, salicylaldiminato Schiff bases or their metal complexes based on diaminomaleonitrile and salicylaldehyde derivatives. These organic electroluminescence devices exhibit excellent color chromaticity co-ordinates and good efficiency.
Abstract:
A method and an apparatus have been developed to fabricate large area uniform silicon cone arrays using different kinds of ion-beam sputtering methods. The apparatus includes silicon substrate as the silicon source, and metal foils are used as catalyst. Methods of surface modification of the as-synthesized silicon cones for field emission application have also been developed, including hydrofluoric acid etching, annealing and low work-function metal coating. Nano-structure modification based on silicon cones takes advantage of the fact that the cone tip consists of metal/metal siliside, which can be used as catalyst and template for nanowires growth. A method and an apparatus have been developed to grow silicon oxide/silicon nanowires on tips of the silicon cones.