Abstract:
A memory device includes a nonvolatile memory cell array including a plurality of memory cells with a portion of the memory cells to store fuse data, and a fuse register to store the fuse data from the memory cell array. An operation of the memory device is modified in response to the fuse register.
Abstract:
A non-volatile semiconductor memory device may include a memory cell array and a controller coupled to the memory cell array. The memory cell array may include first and second memory cells coupled to respective first and second word lines. Each of the first and second memory cells may be configured to be programmed to one of a first, a second, or a third threshold voltage so that the first and second memory cells provide nine different threshold voltage combinations. The controller may be configured to provide a mapping of data of a set of three binary bits providing eight different data combinations to eight of the nine different threshold voltage combinations provided by the first and second memory cells. The controller may be further configured to write data of first, second, and third binary bits to the first and second memory cells by programming each of the first and second memory cells to a respective one of the first, second, or third threshold voltages using the mapping of data. Related methods are also discussed.
Abstract:
A NAND flash memory device includes an array of NAND flash memory cells; a plurality of word lines connected to the NAND flash memory cells; and a plurality of bit lines connected to the NAND flash memory cells. Each bit line includes a first bit line portion, a second bit line portion, and a switching device extending between the first and second bit line portions to selectively connect the first and second bit line portions together. At least a first NAND flash memory cell is connected to the first bit line portion, and at least a second NAND flash memory cell is connected to the second bit line portion. By including primary and secondary page buffers, two pages of memory cells connected to a same group of bit lines can be programmed in a single programming operation, to achieve “double-speed” programming.
Abstract:
A NAND flash memory device may include an interface block which receives an external read enable signal to output an internal clock signal during a read operation. The NAND flash memory device may also include a buffer clock controlling circuit which operates in response to a data output enable signal and the internal clock signal. The NAND flash memory device may also include a buffer clock generating circuit which receives the internal clock signal and which generates first and second buffer clock signals according to a control output of the buffer clock control circuit. The NAND flash memory device may also include a data output buffer circuit which sequentially outputs read data in response to one of the first and second buffer clock signals, wherein the buffer clock controlling circuit controls the buffer clock generating circuit to generate the second buffer clock signal having a single pulse when the data output enable signal is activated.
Abstract:
A memory device includes a nonvolatile memory cell array including a plurality of memory cells with a portion of the memory cells to store fuse data, and a fuse register to store the fuse data from the memory cell array. An operation of the memory device is modified in response to the fuse register.
Abstract:
A nonvolatile memory device includes a nonvolatile memory cell array including a plurality of nonvolatile memory cells connected to a plurality of word lines, a word line voltage generator configured to generate first and second sequences of voltage pulses. The device selectively supplies one of the first and second sequences of voltage pulses to a selected one of the word lines to program the nonvolatile memory cells connected to the selected word line. A slope of at least one voltage pulse of the first sequence of voltage pulses is greater than a slope of at least one voltage pulse of the second sequence of voltage pulses. In general, the first sequence is applied to word lines far away from the string select line (SSL), and the second sequence is applied to word lines that are close to the SSL.
Abstract:
A flash memory device comprising a high voltage generator circuit that is adapted to supply a program voltage having a target voltage to a selected word line is provided. The flash memory device is adapted to terminate the program interval in accordance with when the program voltage has been restored to the target voltage after dropping below the target voltage. A method for operating the flash memory device is also provided.
Abstract:
To program in a nonvolatile memory device include a plurality of memory cells that are programmed into multiple states through at least two program steps, a primary program is performed from an erase level to a first target level with respect to the memory cells coupled to a selected word line A preprogram is performed from the erase level to a preprogram level in association with the primary program with respect to the memory cells coupled to the selected word line, where the preprogram level is larger than the erase level and smaller than the first target level A secondary program is performed from the preprogram level to a second target level with respect to the preprogrammed memory cells coupled to the selected word line.
Abstract:
A non-volatile memory device and system as well as a LSB read method are disclosed. The LSB read method includes reading LSB data from a memory cell during a main LSB read operation making reference to a flag cell threshold voltage, determining whether the LSB data contains an error, and if the LSB data contains an error re-reading the LSB data during a LSB recover-read operation without making reference to the flag cell threshold voltage.
Abstract:
A nonvolatile memory device includes a plurality of memory cells connected to a wordline and arranged in a row direction, bitlines connected to the plurality of memory cells, respectively, and a bitline bias circuit configured to separately control bias voltages provided to the bitlines according to positions of the memory cells along the row direction.