Abstract:
An injection molding apparatus capable of minimizing cracks at the corners of a mold is provided. The injection molding apparatus includes first and second molds that mate with each other to define a molding cavity, a stationary member that supports the first mold, a movable member that supports the second mold and moves backwards and forwards together with the second mold, and a plurality of pressing members installed around the first mold so as to press a periphery of the first mold toward the molding cavity by a pressing force of the movable member when the first mold is mated with the second mold.
Abstract:
The present invention describes a method including: providing a substrate, the substrate including a first region and a second region; forming a multilayer mirror over the substrate; forming a phase-shifter layer over the multilayer mirror; forming a capping layer over the phase-shifter layer; removing the capping layer and the phase-shifter layer in the second region; illuminating the first region and the second region with EUV light; and reflecting the EUV light off the first region and the second region. The present invention also describes a structure including: a substrate, the substrate including a first region and a second region; a multilayer mirror located over the first region and the second region; a phase-shifter layer located over the multilayer mirror in the region; an intensity balancer layer located over the multilayer mirror in the second region; and a capping layer located over the phase-shifter layer in the first region and over the intensity balancer layer in the second region.
Abstract:
Portable microwave plasma systems including supply lines for providing microwaves and gas flow are disclosed. The supply line includes at least one gas line or conduit and a microwave coaxial cable. A portable microwave plasma system includes a microwave source, a waveguide-to-coax adapter and a waveguide that interconnects the microwave source with the waveguide-to-coax adapter, a portable discharge unit and the supply line. The portable discharge unit includes a gas flow tube coupled to the supply line to receive gas flow and a rod-shaped conductor that is axially disposed in the gas flow tube and has an end configured to receive microwaves from the microwave coaxial cable and a tapered tip positioned adjacent the outlet portion of the gas flow tube. The tapered tip is configured to focus microwave traveling through the rod-shaped conductor and generate plasma from the gas flow.
Abstract:
A downward type micro electro mechanical system (EMS) switch and a method of fabricating the same is provided. The downward type MEMS switch includes first and second cavities formed in a substrate, first and second actuators formed on upper portions of the first and second cavities, first and second fixing lines formed on an upper surface of the substrate and not overlapped with the first and second cavities, and a contact pad which is spaced apart at a predetermined distance from surfaces of the first fixing line and the second fixing line but which can be contacted with the first fixing line and the second fixing line when the first actuator and the second actuator are driven. The contact pad, which is actuated downward by piezoelectricity, is fabricated as it shares a layer with a RF signal line, after the RF signal line is fabricated.
Abstract:
A method for fabricating a tape substrate includes forming, on an insulating film, a copper foil pattern having a connecting area; coating a solder resist on the formed copper foil pattern, at a region other than the connecting area; plating a barrier layer on the copper foil pattern at the connecting area after the coating of the solder resist; and plating tin on the plated barrier layer plated, thereby forming a tin layer on the barrier layer. Another method for fabricating a tape substrate includes forming, on an insulating film, a copper foil pattern having a connecting area; plating a barrier layer over the formed copper foil pattern; plating tin over the barrier layer after the plating of the barrier layer, thereby forming a tin layer over the barrier layer; and coating a solder resist on the tin layer at a region other than the connecting area, after the formation of the tin layer.
Abstract:
A pneumatic micro electro mechanical system switch includes a substrate, a pneumatic actuating unit disposed on the substrate; the pneumatic actuating unit having a plurality of variable air cavities communicating such that when one of the plurality of variable air cavities is compressed, the rest are expanded; a signal line having a plurality of switching lines, each of which passes through a corresponding one of the plurality of variable air cavities and has switching ends disposed in a spaced-apart relation with each other in the corresponding one of the plurality of variable air cavities; a movable switching unit to connect the first and the second switching ends of each of the plurality of switching lines if one of the plurality of variable air cavities is compressed; and a driving unit to drive the pneumatic actuating unit so as to selectively compress the plurality of variable air cavities.
Abstract:
A MEMS (micro electro mechanical system) switch, which includes a substrate; a fixed electrode formed on an upper side of the substrate; a signal line formed on both sides of the fixed electrode; a contact member formed on an upper side of the signal line at a distance from said fixed electrode and contacting an edging portion of the signal line; a supporting member supporting the contact member to be movable; and a moving electrode disposed on an upper side of the supporting member.
Abstract:
The present invention describes a method including: providing a substrate, the substrate including a first region and a second region; forming a multilayer mirror over the substrate; forming a phase-shifter layer over the multilayer mirror; forming a capping layer over the phase-shifter layer; removing the capping layer and the phase-shifter layer in the second region; illuminating the first region and the second region with EUV light; and reflecting the EUV light off the first region and the second region.The present invention also describes a structure including: a substrate, the substrate including a first region and a second region; a multilayer mirror located over the first region and the second region; a phase-shifter layer located over the multilayer mirror in the region; an intensity balancer layer located over the multilayer mirror in the second region; and a capping layer located over the phase-shifter layer in the first region and over the intensity balancer layer in the second region.
Abstract:
An molding apparatus includes a core having a recessed part corresponding to a protruding part of a molded article, an ejector pin movably provided in the core to eject the molded article, an ejector sleeve movably provided in the core to push the protruding part of the molded article, and an ejector actuating part to move the ejector pin and the ejector sleeve together to a separation position where the protruding part of the molded article is separated from the recessed portion of the core, to bring the ejector sleeve into a stop position so that the ejector sleeve does not protrude from the core, and to move the ejector pin from the separation position to a removal position where the molded article is spaced apart from the core by a predetermined distance. Accordingly, the molding apparatus is capable of preventing damage caused on an ejector sleeve.
Abstract:
A switch pad for switching signal flow and a micro-switch having the same. The switch pad comprises a body formed so that as approaching opposite end portions from a central portion of the body, the body is more remotely spaced from a horizontal plane containing a top surface of the electrostatic driving unit. With the body of the switch pad formed in this manner, the switch pad can be more stably driven.