Abstract:
A medical kit and method for treating an ailment, such as chronic pain is provided. The kit comprises first and second medical leads, e.g., stimulation leads. Each lead comprises an elongated body and at least one operative element. The first medical lead comprises a coupling mechanism, such as a slot, and the second medical lead comprises a complementary mechanism, such as a rail, that slidably engages the coupling mechanism of the first medical lead. The method may comprise delivering the first medical lead into a patient's body, e.g., into the epidural space of the patient, and delivering the second medical lead into the patient's body by sliding the complementary coupling mechanism of the second medical lead along the coupling mechanism of the first medical lead.
Abstract:
An intravascular catheter that exhibits the combined features of superior flexibility, softness, radiopacity and oval/kink resistance. The catheter includes an elongate shaft having a proximal region, a distal region and a lumen extending therethrough. The proximal region of the shaft includes an inner lubricious polymer layer, a reinforcement layer and an outer layer. The reinforcement layer comprises a braid having one or more metallic members and a plurality of polymer members wherein each polymer member comprises a plurality of monofilaments, preferably formed of LCP. The polymer members of the braid provide improved flexibility and softness in addition to high burst pressure. The metallic member(s) of the braid provide improved radiopacity and oval/kink resistance. The catheter may also include a longitudinal member extending along the reinforcement layer.
Abstract:
A system for treating tissue includes a source of conductive and/or magnetic beads, a first member, e.g., a catheter or cannula, coupled to the source of magnetic beads, and a second member, e.g., a catheter or cannula, carrying a magnet on its distal end. The system is used for ablating or otherwise treating tissue within a target tissue region including a blood vessel contacting or passing therethrough. Magnetic beads are introduced into the target tissue region, e.g., using the first member, and a magnetic field is generated within the target tissue region, e.g., using the second member, to cause the magnetic beads to migrate towards a wall of the vessel. Energy is delivered into the target tissue region, e.g., to heat tissue therein, and the magnetic beads may attenuate or enhance treatment of tissue adjacent to the vessel.
Abstract:
In one embodiment, a device is provided including an expandable support member having a first portion and a second portion is provided. The first portion is adapted to have a smaller expansion index than the second portion. A therapeutic or diagnostic instrument is supported, at least in part, by the expandable support member first portion. In another embodiment, the support member is adapted for non-uniform expansion of the first and second portions. There are also described methods of forming therapeutic devices. There are also described methods of providing therapy to tissue in a body by positioning a device in proximity to tissue in a body selected to receive therapy. Next, the expandable support member second portion is expanded until the instrument is at a therapeutic position relative to the tissue in a body selected to receive therapy. Thereafter, therapy or diagnosis is provided to the selected tissue using the device.
Abstract:
Described herein are elongate devices for modifying tissue having a plurality of flexibly connected and rungs or links, and methods of using them, including methods of using them to decompress stenotic spinal tissue. These devices may be included as part of a system for modifying tissue. In general, these devices include a plurality of blades positioned on for formed from) rungs that are flexibly connected and may be separated by one or more spacers. The rungs are typically wider than they are long (e.g., rectangular). The rungs may be arranged, ladder like, and may be connected by a flexible connector substrate or between two or more cables. Different sized rungs may be used, or rungs with different cutting properties. In some variations the tissue modification devices may have a non-linear axial shape, or may be converted from a first axial shape to a second axial shape.
Abstract:
Methods and devices for measuring the size of a body lumen and a method for ablating tissue that uses the measurement to normalize delivery of ablational energy from an expandable operative element to a luminal target of varying circumference are provided. The method includes inserting into the lumen an expandable operative element having circuitry with resistivity or inductance that varies according to the circumference of the operative element, varying the expansion of the operative element with an expansion medium, measuring the resistivity of the circuitry, and relating the resistivity or inductance to a value for the circumference of the operative element. In some embodiments the sizing circuit includes a conductive elastomer wrapped around the operative element. Other embodiments of the method apply to operative elements that include an overlapping energy delivery element support in which the overlap varies inversely with respect to the state of expansion, and which is configured with sizing electrodes that sense the amount of the overlap.
Abstract:
An apparatus for treating tissue within a lumen may include a therapeutic or diagnostic instrument. A cleaning device may also be supported by the instrument. The cleaning device has a portion of a cleaning surface positioned proximal to the distal end of the cleaning device.
Abstract:
Devices and methods for cutting tissue in a patient. In some embodiments, a bimanually controlled device may include a tissue modification region; one or more (e.g., two) flexible elongate length of cable that extend proximally to distally, a tissue modification region along a portion of the length of cable; and a guidewire coupler at the distal end of the device for attaching the distal end of the tissue modification device to the proximal end of a guidewire. Method of using these devices (including devices having two or more parallel length of cutting regions) to cut tissue (e.g., spinal lamina) are also described.
Abstract:
Described herein are devices and methods for cutting tissue in a patient. In some embodiments, a bimanually controlled device may include a tissue modification region; at least two flexible elongate lengths of cable that extend substantially adjacent to each other proximally to distally; a plurality of rungs extending between the lengths of cable; and a pair of flexible elongate cutting members extending along the length of the tissue modification region of the device. Each elongate cutting member has a thickness cuts a discrete trough into tissue to a depth that is greater than the thickness of the cutting member. The device may further include a substrate sized and configured to releasably hold the cutting members a distance from one another and a pair of couplers positioned toward an outer edge region of the substrate and configured to releasably secure a cutting member to the outer edge region of the substrate.
Abstract:
Described herein are pullwire handle devices for securing to a tissue-penetrating pullwire. In some embodiments, the device includes a handle body, a pullwire lock configured to removably lock the pullwire handle device onto a pullwire within the handle body, and a tip containment element configured to retain the distal tip of the pullwire. In some embodiments, the handle body further comprises a storage chamber configured to store a distal portion of the pullwire. Also described herein are methods for capturing a pullwire using a pullwire handle device. In some embodiments, the method includes the steps of inserting the distal end of a pullwire into the pullwire handle device, advancing the pullwire further into the pullwire handle device while the distal portion of the pullwire is contained within the pullwire handle device, and locking the distal portion of the pullwire within the pullwire handle device.