Abstract:
An optical scanning device includes an optical housing; an elongated optical element arranged in the optical housing and having a shape extending in a main-scanning direction; a retaining member provided at a side opposite to a surface of the optical housing on which the optical element is arranged to maintain an attachment attitude of the optical element in the optical housing; a curvature adjusting unit configured to adjust a curvature of the elongated optical element in a scanning line via the retaining member; a tilt adjusting unit configured to adjust a tilt of the optical element in the scanning line by making the optical element rotate on an optical axis via the retaining member; and a positioning unit configured to position the optical element in the optical axis direction, and provided in the optical housing and having such a shape that the optical element fits the positioning unit.
Abstract:
A control device is provided for controlling a light emission device. The control device includes a light metering unit configured to acquire respective light metering values from a plurality of light metering regions. The control device further includes a correction unit configured to correct information about a light metering value of a target region based on a result of comparison between the light metering value of the target region and the light metering value of the light metering region at the periphery of the target region among the plurality of light metering regions, the result being acquired by the light metering unit allowing the light emission device to perform pre-flashing. Also, a calculation unit is provided which is configured to calculate a main light emission amount of the light emission device based on the information about the light metering value corrected by the correction unit.
Abstract:
An optical scanner includes an optical housing, which houses a light source, an aperture stop, a condensing lens and a rotary deflector, light from the light source entering into the rotary deflector via the aperture stop and the condensing lens, and the light deflected by the rotary deflector scanning a target to be irradiated, a fastener, which fastens the condensing lens to the optical housing, and a fastener attachment portion to which the fastener is attached, the fastener attachment portion being disposed in a downstream side of the condensing lens in a traveling direction of the light in the housing.
Abstract:
A multilayer ceramic electronic component comprising an element body in which a dielectric layer and an internal electrode layer are stacked. The dielectric layer is constituted from a dielectric ceramic composition including; a compound having a perovskite structure expressed by a formula of ABO3 (A is at least one selected from Ba, Ca, and Sr; B is at least one selected from Ti, Zr, and Hf); an oxide of Mg; an oxide of rare earth elements including Sc and Y; and an oxide including Si. The dielectric ceramic composition comprises a plurality of dielectric particles and a grain boundary present in between the dielectric particles. In the grain boundary, when content ratios of Mg and Si are set to D(Mg) and D(Si) respectively, D(Mg) is 0.2 to 1.8 wt % in terms of MgO, and D(Si) is 0.4 to 8.0 wt % in terms of SiO2.
Abstract:
A clock generation circuit comprises: a first generation unit; a second generation unit; and a control unit that, using a plurality of third delay elements that respectively have a propagation delay time that correlates with the propagation delay time of a first delay element, and correlates with the propagation delay time of a second delay element, generates a control signal for controlling the third delay elements such that a total of propagation delay times of the plurality of third delay elements corresponds to a target value depending on a cycle of the external clock, and controls the propagation delay time of the first delay element, the propagation delay time of the second delay element, and the propagation delay times of the third delay elements using the control signal.
Abstract:
A clock generation circuit comprises: a first generation unit; a second generation unit; and a control unit that, using a plurality of third delay elements that respectively have a propagation delay time that correlates with the propagation delay time of a first delay element, and correlates with the propagation delay time of a second delay element, generates a control signal for controlling the third delay elements such that a total of propagation delay times of the plurality of third delay elements corresponds to a target value depending on a cycle of the external clock, and controls the propagation delay time of the first delay element, the propagation delay time of the second delay element, and the propagation delay times of the third delay elements using the control signal.
Abstract:
When clamping a signal from a solid state image sensor, float of an optical black pixel output due to incoming of infrared light avoids a malfunction of a clamp from occurring. When clamping a signal from the solid state image sensor, the difference between the optical black pixel output and a clamp target level is output as a difference output, the difference output is compared with a comparison level to integrate the number of times larger than the comparison level every horizontal line. When the number of times is equal to or more than a certain rate (⅔) from the number of optical black pixels on the horizontal line, an optical black float state is determined and clamping operation is performed in accordance with a held value immediately before.
Abstract:
An integrated circuit device of the present invention includes a plurality of signal processing circuits classified into a plurality of groups, each signal processing circuit including an amplifier circuit for amplifying an input electric signal and a bias circuit having an input terminal connected electrically to a bias source and supplying a bias input terminal of the amplifier circuit with an operation bias for an amplifying operation of the amplifier circuit; and a plurality of connection wirings arranged each for each of the groups separately, such that the input terminals of the bias circuits of the signal processing circuits in one of the groups are commonly connected through the connection wirings. This provides an integrated circuit device suppressing the lowering of an image quality in consideration of enabling lower power consumption, a low noise characteristic, and high integration, and an imaging apparatus using the integrated circuit.
Abstract:
Disclosed herein is a computer system provided with a mechanism for connecting a single port disk to an active server and the disk to a standby server when in a fail-over processing. An “add_pci” command issued from a clustering program is used to let a control program change the allocation of a PCI slot while an interruption signal issued to a standby server permits an ACPI processing routine to hot-add a PCI card that includes the disk unit on the subject guest OS.
Abstract:
A corpus-based speech synthesizing apparatus is provided which has a text analysis unit for analyzing a given sentence in text data and generating phonetic symbol data corresponding to the sentence; a prosody estimation unit for generating a prosodic parameter representing an accent and an intonation corresponding to each phonetic symbol data according to a preset prosodic knowledge base for accents and intonations; speech-unit extraction unit for extracting all the speech segment waveform data of a predetermined speech unit part from each speech data having the predetermined speech unit part closest to the prosodic parameter, based on a speech database which stores therein plural kinds of predetermined selectively prerecorded speech data only such that the speech database has a predetermined speech unit suitable for a specific application of the speech synthesizing apparatus; and a waveform connection unit for generating synthesized speech data by performing sequentially successive waveform connection of the speech segment waveform data groups such that the speech waveform of the speech segment waveform data groups continues, wherein the respective functional units, a data input unit, a speech conversion processing unit, and a speech speed conversion unit is added or removed as desired depending on a specific application and a scale of the apparatus.