Abstract:
An actuator controller for actuating an actuator which can be operated fluidically, having a feed line for an inflow of the working fluid to an actuator connector and having a discharge line for an outflow of the working fluid to a fluid outlet, wherein the feed line is assigned a feed line valve and the discharge line is assigned a discharge valve, which valves are configured in each case to influence a volumetric fluid flow at the actuator connector, and having a control device for actuation of the feed line valve and the discharge valve. A throughflow sensor is arranged in a line section between the discharge valve and the fluid outlet, which throughflow sensor is configured for determining a volumetric fluid flow in the discharge line and for providing a throughflow signal.
Abstract:
A method is provided for controlling a hydraulic cylinder in a work machine, which hydraulic cylinder is arranged to move an implement that is subjected to a load, with the hydraulic cylinder being controlled by a hydraulic machine. The method includes detecting that a lifting movement of the implement is to be initiated, and attaining a basic speed of the hydraulic machine before lifting takes place.
Abstract:
The disclosed invention relates to a swing control system for construction machines and is useful in a construction equipment in which the shaking or jerking movement of the upper swing structure due to the moment of inertia thereof is controlled by a simple electrical hydraulic control system so that although the swing manipulation is abruptly and repeatedly performed during the excavation or dumping operation, an operator can control the soft swing start/stop of the upper swing structure in the swing operation of construction machine, thereby improving manipulability and work efficiency of the work apparatus.
Abstract:
Inside a valve housing equipped with a first flow path and a second flow path that connect in parallel with a first port and a second port, there are provided a needle valve body that opens/closes a throttle hole in the first flow path, a check valve that opens/closes the second flow path, and a piston that performs an open/close control of the needle valve body through the interaction of the pressure of a fluid introduced into a pressure chamber and the spring force of a compression spring. The needle valve body is formed at the tip of a rod coupled to the piston. Inside the rod and the needle valve body there is formed a conduction hole connecting the throttle hole and the pressure chamber.
Abstract:
Disclosed are a device and a method for controlling a hydraulic pump in a construction machine, the method including: checking whether a dynamic characteristic of an engine deviates from a predetermined permissible range when a load is applied to the hydraulic pump and a pump load reaches pump torque required by the hydraulic pump; when the dynamic characteristic of the engine deviates from the predetermined permissible range, applying a pump load to the hydraulic pump so as to increase the pump torque to predetermined torque with a predetermined change rate; collecting information which is generated when the pump load is applied; generating a new torque change rate map by generating a torque change rate for each load section based on the information collected in the information collecting step; and updating an existing torque change rate map to the new torque change rate map generated in the map data generating step.
Abstract:
An electromagnetic switching valve, for which the maximum opening is set to be small, is disposed on piping between a lift cylinder and a hydraulic pump motor. A pilot check valve, for which the maximum opening is set to be larger than the electromagnetic switching valve, is disposed on piping, different from the piping, between the lift cylinder and the hydraulic pump motor. In addition, during lowering operations, first, the electromagnetic switching valve is opened, and then after the same is opened, the pilot check valve is opened after a prescribed time has passed. Thus, the shock generated when lowering an object to be raised/lowered is reduced and a fork is operated quickly.
Abstract:
A booster for a digital hydraulic controller which has at least one digital valve (40). The booster is connected to a magnetic coil (41) of a valve stem (42) of the digital valve (40) by at least two voltages (21, 22) wherein one voltage (21) is higher than the other voltage (22). The invention also relates to a method for using a booster in connection with a digital hydraulic controller.
Abstract:
A control valve device comprises two direction control valves. The direction control valve includes an expansion side variable throttle portion and a contraction side variable throttle portion. The direction control valve includes an expansion side variable throttle portion and a contraction side variable throttle portion. When a hoist cylinder is telescopically operated to raise or lower a vessel, as the hoist cylinder (10) approaches a stop position, a controller determines that the hoist cylinder gets close to the stop position. Based upon this determination, the controller variably adjusts a flow passage area of the direction control valve using the variable throttle portions or variably adjusts a flow passage area of the direction control valve using the variable throttle portions in such a manner as to slow down or speed up the telescopic speed of the hoist cylinder corresponding to the weight in the side of vessel.
Abstract:
In a hydraulic drive device for vertical pivoting movement of a load carrying platform, a first directional control valve has only three switchover positions, including a neutral position relating to operation of stopping and holding a load carrying platform, a switching position relating to operation of lifting the load carrying platform, and a switch over position relating to operation of forced lowering of the load carrying platform. A second directional control valve has only three switchover positions, including a neutral position, a switching position, and a switchover position relating to operation of allowing the load carrying platform to fall by its own weight. The device includes a first on-off valve, a second on-off valve, and a third on-off valve that are proportional control solenoid valves for switching an appropriate one of the first and second directional control valves.
Abstract:
A hydraulic system for construction equipment is provided, which can increase the driving speed of a corresponding working device by making hydraulic fluid of a hydraulic pump, which is added to the hydraulic system having two hydraulic pumps in the construction equipment, join hydraulic fluid on the working device side, and can intercept the supply of hydraulic fluid from the working device side to a traveling apparatus side when the working device and the traveling apparatus are simultaneously manipulated.