Abstract:
Provided is a novel chamber effluent monitoring system. The system comprises a chamber having an exhaust line connected thereto. The exhaust line includes a sample region, wherein substantially all of a chamber effluent also passes through the sample region. The system further comprises an absorption spectroscopy measurement system for detecting a gas phase molecular species. The measurement system comprises a light source and a main detector in optical communication with the sample region through one or more light transmissive window. The light source directs a light beam into the sample region through one of the one or more light transmissive window. The light beam passes through the sample region and exits the sample region through one of the one or more light transmissive window. The main detector responds to the light beam exiting the sample region. The system allows for in situ measurement of molecular gas impurities in a chamber effluent, and in particular, in the effluent from a semiconductor processing chamber. Particular applicability is found in semiconductor manufacturing process control and hazardous gas leak detection.
Abstract:
A light sampling system for sampling scattered light from mirrors in an optical switch. The system includes four basic components: an imaging lens, a multi-channel liquid crystal light valve (LCLV), a collecting lens, and a light sensor. Light scattered by each mirror, is collected by the imaging lens, which re-images the light onto the LCLV. The LCLV is divided into multiple regions, one for each mirror to be monitored. Each region can independently be made opaque (nullclosednull) or transparent (nullopennull) to light reaching it. Light passing through all open regions of the LCLV is collected by the collecting lens, which focuses the light onto the light sensor. The light sensor registers a response to light passing through the LCLV. Each region of the LCLV can be programmed to be open or closed for any length of time, in any combination or sequence with any other region or regions, depending upon how the user wishes to monitor the scattered light. The system is particularly useful for individually sampling scattered light from each of multiple mirrors.
Abstract:
A ground contamination detector has a duct (21) having an annular opening (21a). The annular opening blows air toward the ground (1) to form an air curtain that defines an enclosed space (2A) between the duct and the ground. The detector also has a pipe (23) having a nozzle that opens in the enclosed space and jets heated air toward the ground, to promote the evaporation of noxious substance (3) and diffuse the evaporated gas in the enclosed space. The detector also has a suction pipe (24) to suck the evaporated gas from the enclosed space and a sensor (25) to analyze the sucked gas. The enclosed space formed by the air curtain defines a detection area on the ground, and the detector collects and analyzes contaminants in the enclosed space in a noncontact way. The detector is installable on a vehicle, to efficiently detect the presence and position of contaminants on the ground in real time.
Abstract:
An apparatus for simulating a blackbody utilizes several plates to absorb and reflect electromagnetic radiation. Electromagnetic radiation entering the apparatus from a certain view is reflected from one plate to another, until the direction of travel of the electromagnetic radiation is reversed. Each time the electromagnetic radiation is reflected, the majority of the electromagnetic radiation is absorbed resulting in a negligible amount of incoming electromagnetic radiation escaping the apparatus.
Abstract:
The illustrated embodiment of the invention is an improvement to an infrared camera in which an uncooled warm stop is provided which includes an array of miniature retro-reflectors on its rear surface oriented toward the detector in the camera and away from the exterior light source of interest instead of having a diffuse (i.e., Lambertian or white) or specular (i.e., mirror-like) reflector on the rear or interior surface of the warm stop.
Abstract:
A multi-charged particle beam tool for semiconductor wafer inspection or lithography includes an array of electron beam columns, each having its own electron or ion source. The objective lenses of the various electron beam columns, while each has its own pole piece, share a common single magnetic coil which generates a uniform magnetic field surrounding the entire array of electron beam columns. This advantageously improves the spacing between the beams while providing the superior optical properties of a strong magnetic objective lens. When used as an inspection tool, each column also has its own associated detector to detect secondary and back-scattered electrons from the wafer under inspection. In one version the gun lenses similarly have individual pole pieces for each column and share a common magnetic coil.
Abstract:
A system and method for gathering image data are disclosed. A first sensor (120) receives light directly from an aperture (114) and generates a first data set in response to the received light. A first reflective surface (130) receives light from the aperture (114) and reflects the received light. A second reflective surface (132) receives light reflected from the first reflective surface (130) and reflects the received light. A second sensor (134) receives light reflected from the second reflective surface (132) and generates a second data set in response to the received light. The second sensor (134) is substantially coaxial with the first sensor (120).
Abstract:
In one aspect of the invention, a temperature sensing system, including: control components; and an infrared sensor to provide a temperature input signal to the control components, the infrared sensor being located remotely from the control components. In an additional aspect of the invention, a circuit board for an infrared temperature sensing system, including: a first portion; a second portion coplanar with the first portion; and at least one necked down portion joining the first portion and the second portion. In a further aspect of the invention, a housing for an infrared temperature sensing system, including: a base member; and first support members attached to the base member to permit an infrared temperature sensor to be mounted in a selected one of two positions.
Abstract:
A virtual blackbody radiation system (10) includes a light-emitting unit (1) including an LED driven by a fixed current, a light-receiving unit (2) including a sapphire rod, and an optical unit (3) including lenses (31, 32) for converging light emitted by the light-emitting unit in a convergent light. A cylindrical member (41)included in the optical unit (3)can be moved along the optical axis by a servomotor (42) included in a focus adjusting unit (4) for positional adjustment. The focus of convergent light relative to the light-receiving unit (2) can be adjusted by moving the lens (32) disposed in the cylindrical member (41) along the optical axis relative to the light-receiving unit (2). The intensity of the convergent light on the light-receiving unit (2) can be adjusted to the intensity of predetermined blackbody radiation. Thus, the virtual blackbody radiation system (10) is able to obtain light of a desired intensity without changing the driving current for driving a light source; consequently, the life time of the light source can be extended and the stability of radiation can be improved.
Abstract:
A low profile spectrometer includes one or more electromagnetic energy emitters, one or more electromagnetic energy detectors, and an optical path including a sampling element. The optical path optically couples each of the one or more electromagnetic energy emitters to one of the one or more electromagnetic energy detectors. The one or more electromagnetic energy detectors and the one or more electromagnetic energy emitters are formed on a common substrate. The spectrometer may also include one or more first re-imaging elements for optically coupling the one or more electromagnetic energy emitters to the sampling element, and one or more second re-imaging elements for optically coupling the one or more electromagnetic energy detectors to the sampling element. The sampling element is capable of being optically coupled to a sample and provides a path for optically coupling the one or more first re-imaging elements to the one or more second re-imaging elements.