Abstract:
Taught herein is a controller for a direct current brushless motor connected to a high voltage control system, comprising a microprocessor and an input/output interface circuit connected between the high voltage control system and the microprocessor; wherein the input/output interface circuit is a step-down circuit for transforming a high voltage control signal into a low-voltage control signal. The controller enables the high voltage control system to cooperate with motor, therefore a user is not necessary to design a new high voltage control system when replacing the conventional AC motor with the DC brushless motor, which saves time, and reduces cost.
Abstract:
A motor driving apparatus makes a carrier signal of an inverter be synchronized with a carrier signal of a DC/DC converter, and determines a phase difference between both the carrier signals based on a ratio of an input voltage inputted to the DC/DC converter and an input voltage inputted to the inverter, and a percentage of modulation and a power factor which are operation parameters of the inverter. When the frequency of the carrier signal of the DC/DC converter is set to be twice as high as that of the carrier signal of the inverter, an optimal phase difference is determined based on the ratio of the input voltage of the DC/DC converter and the input voltage of the inverter.
Abstract:
A system 10 provides a variable output voltage to a DC brush motor. The system includes a DC bush motor 14, a DC voltage source 12, a step-up, step-down DC/DC converter 16 including a switch 18. The DC/DC converter is constructed and arranged to step-up and step-down voltage from the source to provide an output voltage to the motor between 0 and 42 volts. A control unit 22 is constructed and arranged to receive an input signal 20 and to control the switch based on the input signal to control the motor.
Abstract translation:系统10向DC电刷电动机提供可变输出电压。 该系统包括直流衬套电动机14,直流电压源12,包括开关18的升压,降压DC / DC转换器16. DC / DC转换器被构造和布置成升压和降压 电压从电源提供输出电压到电机在0和42伏之间。 控制单元22被构造和布置成接收输入信号20并且基于输入信号控制开关以控制电动机。
Abstract:
An active filter reduces the common mode current in the ground wire of a PWM controlled motor drive circuit. The active filter is, in part, integrated into an integrated circuit chip and contains a buffer amplifier which drives two junction type or MOSFET transistors linearly to divert common mode current from a ground wire and through the transistors. The transistors are connected between positive and negative d-c busses which supply d-c power to a PWM inventor which drives an a-c motor, producing the common mode ground current in its grounded frame. A current transformer monitors the common mode current and its output is coupled to the input of the buffer amplifier to control the transistors. An internal power supply for the amplifiers is formed at the nodes between two current sources and two zener diodes which are connected between the d-c bus conductors. Headroom control circuits are disclosed to insure sufficient headroom voltage for each of the transistors under all input a-c voltage conditions.
Abstract:
A power conversion system for converting between electric and motive power may be utilized either in a generating mode to generate electric power from motive power supplied by a prime mover or in a starting mode wherein motive power is developed by the power conversion system from electrical power and is supplied through a torque converter to the prime mover to start same. The power conversion system includes a main generator, an exciter and a permanent magnet generator, or PMG, which together comprise a brushless alternator. When operated in the starting mode, power is supplied to the PMG to cause it to act as a motor and thereby drive a rotor which is common to the PMG, exciter and main generator. Once a predetermined operating condition of the generator is attained, the main generator is supplied power from a motor control to cause the generator to act as a synchronous motor and the power supply to the PMG is disconnected. The torque converter is then commanded to transfer motive power from the generator to the prime mover to start same.
Abstract:
A motor control device includes a DC/DC converter that steps up or steps down a voltage of a direct current power source and performs charging, while controlling an inrush current to a smoothing capacitor; a monitor circuit for the output of the DC/DC converter; and a control part that turns the operation of the DC/DC converter on and off, and turns the DC/DC converter off when the monitor circuit has detected an abnormality.
Abstract:
A shift device includes: a motor drive circuit; a motor driver unit for driving the motor drive circuit; a control unit that controls the motor driver unit; a motor power supply path; a system power supply path; and a buck-boost unit that converts electric power supplied from the system power supply path to a predetermined voltage and outputs the voltage. Electric power is supplied to the control unit via the buck-boost unit, and either the electric power from the motor power supply path or the electric power from the system power supply path is supplied to the motor driver unit based on a voltage.
Abstract:
A discharge switch and a capacitor are connected in series between first and second DC power supply lines. A boost circuit boosts a rectified voltage to charge the capacitor. An inverter receives the rectified voltage as a DC voltage when the discharge switch is not conducting, receives a voltage across the capacitor as the DC voltage when the discharge switch is conducting, converts the DC voltage into an AC voltage, and outputs it to a motor. A switch control unit maintains the discharge switch not conducting over a first time period, and switches the discharge switch between conducting and not conducting in a second time period. A charge and discharge time period setting unit sets the first time period when a rotational speed of the motor is higher than a speed threshold shorter than the first time period when the rotational speed is lower than the speed threshold.
Abstract:
When an abnormality occurs in a first voltage sensor that detects a voltage of a power line on a high voltage side or a second voltage sensor that detects a voltage of a power line on a low voltage side, an estimated voltage of the power line on the high voltage side is calculated based on a detected current of a reactor that is detected by a current sensor that detects a current of the reactor as the detected current, and a step-up converter is controlled using the estimated voltage of the power line on the high voltage side.
Abstract:
A fuel cell system to be mounted on a vehicle includes: a fuel cell for generating electric power by using reactant gas; a secondary battery capable of charging and discharging electric power; a converter electrically connected between a drive motor for driving the vehicle and the secondary battery to perform voltage conversion between the drive motor and the secondary battery; and a controller for controlling the fuel cell system. The controller exerts such control that when an accelerator for accepting a speed control instruction for the vehicle has accepted a deceleration instruction under a condition that a charge rate of the secondary battery is equal to or more than a preset value, or when the accelerator has accepted a deceleration instruction under a condition that a chargeable electric power of the secondary battery is equal to or less than a preset value, electric power is discharged from the secondary battery during a period of power-running operation lasting until the drive motor with its torque being decreased shifts to regenerative operation. Thus, increases in frequency at which the auxiliary machine is operated to consume regenerative power can be suppressed.