Abstract:
A simple yet versatile noncontact optical inspection instrument and method are described for the inspection of magnetic disk surfaces for surface defects. This instrument is capable of inspecting the disk surface at any point in the disk manufacturing process. Surface defects such as bumps, pits and scratches can be measured. Surface contaminants such as particles and stains can also be measured. The instrument is also capable of discriminating between surface defects and surface contaminants. The instrument is comprised of two identical optical sensors which are located on opposite sides of the disk. A carriage supports and translates these sensors along the disk radius while a spindle rotates the disk. Both surfaces of the disk are therefore simultaneously scanned in a spiral fashion. The sensor's illumination optics produce a monochromatic focused spot of light which is normally incident upon the disk surface. The sensor uses two collection optics channels which simultaneously detect both the specular reflected light and the diffuse scattered light produced by the disk surface. Both the angle and power of the specular reflected light are measured, while just the power of the diffuse scattered light is measured. The output signals from the sensors are processed to estimate the size of the defects and to determine the type of defect.
Abstract:
An apparatus for scanning a laser beam to examine the surface of a semiconductor wafer comprises a stage onto which a semiconductor wafer is mounted and a laser beam scanning unit for repeatedly rectilinearly scanning a laser beam in a predetermined direction on the semiconductor wafer. This scanning apparatus further has a drive unit for rotating the semiconductor wafer and for moving the semiconductor wafer by only a predetermined distance in the predetermined direction every rotation of the wafer. The laser beam scanning unit rectilinearly scans the laser beam at a swing width of a predetermined amount.
Abstract:
The holding mechanism holds an object under inspection in a manner that the substantially entire surface of the object may relatively be scanned by a laser beam. A spherical integrating light collector has an opening disposed close to the inspected surface of the object held by the holding mechanism. A laser beam illuminating mechanism is coupled with the other end of the spherical integrating light collector, and illuminates the inspected surface of the object with the laser beam through the opening. A photo-electric converter receives the scattered light as is reflected by the inspected surface and collected by the spherical integrating light collector, and converts the scattered light into an electrical signal representing an amount of light. An analog to digital converter converts the electrical signal derived from the photo-electric converter into a digital signal. A peak detector receives the digital signal derived from the analog to digital converter to detect peak values at predetermined periods. A mean value calculator calculates a mean value using a digital signal output from the analog to digital converter. A reference value storing memory stores a reference value to determine defects present on the inspected surface of the object. A threshold level calculator calculates the threshold level using the reference value and the mean value. A defect detector compares peak values derived from the peak detector with the threshold level, and detects the surface defects on the basis of the result of the comparison.
Abstract:
A system includes a vessel floating on a body of water. The system also includes at least one conduit extending from the vessel to below the body of water. The system also includes a scanning device disposed within the at least one conduit. The scanning device includes at least one two-dimensional (2D) line scanner and a rotary encoder coupled to the at least one 2D line scanner. The scanning device is configured to generate three-dimensional (3D) image data of a surface of the at least one conduit or at least one component disposed within the at least one conduit.
Abstract:
In an foreign body detection apparatus, an optical signal detection unit irradiates a light spot onto a surface of an object to be inspected while scanning the surface by employing the light spot in a predetermined direction, and receives a reflected beam from the surface of the inspected object to generate a photodetection signal corresponding to the light intensity of the reflected beam. A foreign body detection unit generates a foreign body detection signal appearing with respect to a leader and a trailer in the scanning direction of a foreign body adhering to the inspected object from the photodetection signal. The foreign body detection signal is obtained, for example, as a difference signal between the photodetection signal and a delayed photodetection signal with a predetermined delay time. A foreign body discrimination unit generates a foreign body discriminating signal indicating a region in which the foreign body is present from the foreign body detection signal.
Abstract:
A pattern defect inspection apparatus is capable of detecting defects, without being affected by non-uniform thickness of a thin film formed on a sample, even when using monochromatic light, such as a laser. The apparatus comprises a laser to illuminate a sample, coherence suppression optics to reduce laser beam coherence, a condenser to condense the laser beam onto a pupil plane of an objective lens, and a detector to detect the light reflected from a circuit pattern formed on a sample. The condenser is designed so that the intensity of light illuminating the sample under test can be partially adjusted according to the type of laser beam illumination condensed on the pupil of the objective lens. Variations in reflected light intensity caused by non-uniform film thickness on the surface of the sample are therefore reduced, and shading is minimized in the detected image to allow detecting of fine defects.
Abstract:
A double-sided optical inspection system is presented which may detect and classify particles, pits and scratches on thin film disks or wafers in a single scan of the surface. In one embodiment, the invention uses a pair of orthogonally oriented laser beams, one in the radial and one in the circumferential direction on both surfaces of the wafer or thin film disk. The scattered light from radial and circumferential beams is separated via their polarization or by the use of a dichroic mirror together with two different laser wavelengths.
Abstract:
In an foreign body detection apparatus, an optical signal detection unit (1) irradiates a light spot onto a surface of an object to be inspected while scanning the surface by the light spot in a predetermined direction, and receives a reflected beam from the surface of the inspected object to generate a photodetection signal (HF) corresponding to the light intensity of the reflected beam. A foreign body detection unit (2a to 2h) generates a foreign body detection signal (C) appearing with respect to a leader and a trailer in the scanning direction of a foreign body adhering to the inspected object from the photodetection signal (HF). The foreign body detection signal is obtained for example as a difference signal between the photodetection signal (HF) and the delayed photodetection signal (HF) with a predetermined delay time. A foreign body discrimination unit (3) generates a foreign body discriminating signal (H) indicating a region in which the foreign body is present from the foreign body detection signal (C).
Abstract:
This apparatus permits the non-destructive examination of entire surfaces for defects and contamination, and can detect microscopically small dot-shaped and linear defects and extremely fine macroscopic non-homogeneous areas. For this purpose, an adjustable lens system (5) is placed in the optical path between light source (2) and objective (9) which produces various intermediate images (31). A first cigar-shaped intermediate image is used for the first scan of the whole of the surface at a relatively large feed offset, and a second dot-shaped intermediate image is used for a second scan of partial areas of the surface at a small feed offset.A dark-field stop assembly (18) with an adjustable dark-field deflection system (8) is placed in the optical path between the lens system (5) and the objective (9), which projects the light beam (1) after deflection exactly centered at right angles through the objective (9) upon the surface of the object (10). The light reflected by the surface (10) and collected by the objective (9) is projected to a photo detector. An electronic analysis system (21) breaks down the amplified output signals from the photo detector (19) into measured values due to dot-shaped, linear, and planiform defects. The electronic analysis system (21) is connected via a computer unit (22) to peripheral equipment (23, 24, 25) which permits the representation of all the measured values obtained in a measuring cycle.
Abstract:
A method for testing components of transparent material for surface irregularities and occlusions, comprising the steps of dot-scanning the component by moving a light ray completely therethrough; detecting the light which represents flaws in at least the front and back surfaces of the component by receivers located on one side of the component; generating fault signals based on the light detected in the detecting step; digitizing the fault signals which are generated in the generating step; feeding the digitized signal to a mapped memory; and analyzing the signal by: (a) feeding the digitized signal to a number of sector counters via a preselectable number of thresholds; (b) evaluating the sector counters on-line according to preselected criterion regarding the number, location and gray tone distribution of the digitized fault signals; and (c) evaluating the signals in the mapped memory in a computer if the fulfillment of the criterion for evaluation of the sector counters cannot be sufficiently assured.