Abstract:
A cooling system for use in a turbine engine component exposed to high temperatures during engine operation. The system includes a serpentine flow passage and an exhaust region. The serpentine flow passage includes a coolant supply inlet. The passage can be configured so that neighboring portions of the passage have coolant flowing in the same direction or, alternatively, in opposite directions. A number of flow disrupting structures, such as microfins and trip strips, can be located along the flow passage. The exhaust region can discharge coolant from the system at reduced exit momentum. The exiting flow can provide film cooling to the component. The cooling system can be provided in a small modular form, which can increase cooling design flexibility and can allow cooling designs tailored to the unique cooling requirements of the individual component. As a result, the modules can result in high levels of cooling effectiveness.
Abstract:
A turbine blade with a blade tip cooling passage formed within the blade tip and extending from the leading edge to the trailing edge. The blade tip passage includes a plurality of fins extending from the pressure side to the suction side walls of the passage, and in which each fin includes a cooling air opening, the openings of which alternate from the pressure side to the suction side in the passage to force the cooling air to flow in a sinusoidal manner. The openings also alternate from the bottom of the passage to the top of the passage so that the cooling air flows in a spiral shape manner. Film cooling holes are positioned along the pressure side walls for some of the spaces formed between adjacent fins to provide film cooling for the blade. A leading edge cooling supply channel supplies cooling air to the blade tip passage through a metering and impingement hole in the first space of the passage located on the leading edge. The fins with the alternating pattern of openings produce both impingement cooling and vortex cooling for the blade tip.
Abstract:
A rotary machine includes a machine rotor, a bearing coupled to the machine rotor, a machine stator, and a sealing device disposed between the machine rotor and the machine stator. The sealing device includes a dry gas seal and first and second seals disposed between the dry gas seal and the bearing. One or both of the first and second seals includes a brush seal or more specifically a brush seal including a plurality of non-metallic fibers.
Abstract:
A housing for a blower, fan or pump or turbine, the housing adapted to be associated with a rotor adapted in use to cooperate with fluid flowing through the housing wherein the housing comprises a shroud for guiding the fluid moving in association with the rotor, the rotor having at least one vane adapted to cooperate with the fluid to drive or to be driven by the fluid, wherein the shroud is configured to promote vortical flow of the fluid through the housing.
Abstract:
A method of forming a curved cooling channel into a gas turbine component such as a turbine blade uses an electrode in the form of a helix. The electrode is driven to rotate around the central rotational axis of the helix and axially along the central rotational axis. A turbine blade for a gas turbine component is provided with at least one helical cooling channel.
Abstract:
A turbocharger turbine housing of this invention comprises a generally circular-shaped body having an exhaust gas inlet flange at a radial housing end and an exhaust gas outlet at an axial end. The inlet flange is configured having openings to two volutes that are separated by a wall divider, thereby forming an X-shaped pattern. The inlet flange is additionally configured having rounded and uniform thickness walls. The volutes are configured having a nonuniform shape and size, and the wall divider is configured having a diminishing area between the volutes, moving through the housing away from the inlet flange. The volutes are configured having a nonuniform shape and size with respect to one another as well moving through the turbine housing. Configured in this manner, turbocharger turbine housings of this invention serve to minimize thermal stress effects caused from transient thermal loading, thereby minimizing and/or eliminating thermal stress relating damage such as cracking.
Abstract:
In an exhaust turbine of a turbocharger with a rotor mounted rotatably in a turbine casing having a spiral inlet duct with a guide vane structure including guide vanes arranged around the rotor and extending essentially tangentially to an outer and inner imaginary circular surface areas in the inflow zone and, respectively, the outflow zone of the guide vane structure, at least the trailing edges but preferably also the leading edges of the guide vanes extend at an angle to an axial line of the imaginary circular surface areas, thereby providing for a uniform loading of the rotor.
Abstract:
A centrifugal blower comprising a siroco fan having a plurality of blowing fans, and a scroll casing forming a spiral draft passage at an external side of the siroco fan, where a siroco fan is so mounted that spiral centers (02,03) comprising the draft passage of the scroll casing are detached from a center (01) of the siroco fan at a predetermined distance, such that a spiral curve of the scroll casing is simply changed to a non-linear curve to thereby enable to increase a flow rate even at a low revolution of the siroco fan and to reduce noise.
Abstract:
A method and apparatus for cooling a wall within a gas turbine engine is provided which comprises the steps of: (1) providing a wall having an internal surface and an external surface; (2) providing a cooling microcircuit within the wall that has a passage for cooling air that extends between the internal surface and the external surface; and (3) increasing heat transfer from the wall to a fluid flow within the passage by increasing the average heat transfer coefficient per unit flow within the microcircuit. According to one aspect, the present invention method and apparatus can be tuned to substantially match the thermal profile of the wall at hand.