Abstract:
A poly axial hinge comprising a mounting plate, a first arm pivotally coupled to a panel mounting element, a second arm pivotally coupled in an scissoring manner with the first arm by a main pivot, and a third arm pivotally coupled to the second arm at a location part way between a first end of said second arm and the main pivot. The mounting plate includes at least one rigidly fixed first gear, and the third arm includes gear teeth directly or indirectly coupled together with the fixed gear, such that rotation of the second arm with respect to said mounting plate causes rotation of the first arm with respect to the second arm, thereby driving the poly axle hinge open and/or closed.
Abstract:
A compatible door hinge for vehicles includes a lower plate which has a pin hole and a hinge hole in which a hinge pin and a bushing pin are respectively disposed, an upper plate which is coupled to the lower plate by the hinge pin and can be changed in position relative to the lower plate, and a body plate with which the lower plate and the upper plate are integrated by the bushing pin passing through them. A minimum required setting distance between the door hinge and an upper or lower door skin of a vehicle door can be maintained without changing the design shape of the door skin. Particularly, a door opening trajectory can be formed closer to the door skin and reduced in radius, such that a rotation gap is ensured.
Abstract:
A hinge mechanism includes first torsion shafts, a first torsion sleeve, second torsion shafts, a second torsion sleeve, a first fixing assembly, a second fixing assembly and a third fixing assembly. The first torsion sleeve is sleeved on the first torsion shafts to link the first torsion shafts. The second torsion sleeve is sleeved on the second torsion shafts to link the second torsion shafts. The first and the second torsion sleeves interfere with each other, so the adjacent first and second torsion shafts drive each other to move. The first fixing assembly is engaged with the adjacent first and second torsion shafts respectively. The second fixing assembly is engaged with the first torsion shaft away from the second torsion shafts. The third fixing assembly is engaged with the second torsion shaft away from the first torsion shafts. The first, second and third torsion shafts interfere with each other.
Abstract:
We provide a hinge comprising: a first leaf for connection to a first object and a second leaf for connection to a second object, a pivot pin, and a convex bearing defining an opening for receiving a portion of the pivot pin, the first leaf including a first retaining portion surrounding a first portion of the pivot pin, and the second leaf including a second retaining portion surrounding a second portion of the pivot pin, for relative rotation of the first leaf and second leaf about an axis of rotation defined by the pivot pin, the axis of rotation being rotatable about the bearing.
Abstract:
A device for opening a panel on a sales counter which includes a basic structure. The panel is arranged on the front side of the sales counter. At least a first profile is provided, as is at least one second profile that is secured on the basic structure. The first profile, with the panel, is pivotable away from the basic structure by a control part. In a closed position, the panel closes the basic structure from the front side of the sales counter, and in an open position it is pivoted away from the basic structure. A control part has one end articulated on the first profile and another end articulated on the second profile or on the basic structure. The first profile is displaceably articulated at its one outer end on the second profile. The control part controls the rotary movement and sliding movement of the first profile.
Abstract:
One aspect is a multi-axis clip hinge with a rotatable member having a spherical portion with a greatest outer diameter and a coupling portion for articulating said member. A clip is provided having an arm defining an inside diameter and comprising a connecting portion. The inside diameter of the arm is less than the greatest outer diameter of the spherical portion of the rotatable member and is engaged therewith such that it interferes with and grips the outside diameter of the spherical portion. A housing is configured to engage the connection portion of the clip thereby securing the clip to the housing. At least one of the clip and the housing prevents relative translational movement of the clip relative to the spherical portion yet allows the spherical portion to rotate in three axes of rotation relative to the clip.
Abstract:
A motorized split-hinge device for a very heavy double door, designed to be motorized and including a flap that is mounted to pivot around an essentially vertical axis of rotation on a frame, includes a stationary split-hinge part integral with the frame and a movable split-hinge part integral with the flap and mounted in rotation relative to the stationary split-hinge part around a pivoting shaft. The movable split-hinge part includes a drive mechanism driven by a motor unit adapted to drive the movable split-hinge part in rotation around its pivoting shaft and starting the flap moving by pivoting when opening or closing, whereby the motor unit is mounted in a removable manner on the drive mechanism and on a stationary part of the door, and is kept in drive position of the mechanism with anti-rotational locking relative to the flap.
Abstract:
An oscillating-mount split-hinge device is provided that is designed to be fitted on a heavy door having at least one panel mounted to pivot on a frame. The split-hinge device includes at least one lower split-hinge configured to support at least the bulk of the load of the panel of the door, and at least one upper split-hinge configured to form an anti-tilting holding point and axial guide of the panel. Each of the lower split-hinge and the upper split-hinge includes a stationary split-hinge part integrated with the frame, and a movable split-hinge part integrated with the flap. Each of the lower split-hinge and the upper split-hinge also includes a pivoting shaft integrated with one of the frame and the panel, the pivoting shaft being configured to enable rotatably guiding the movable split-hinge part relative to the stationary split-hinge part around said pivoting shaft.