摘要:
According to the present invention there is now provided a body of cemented carbide or cermets coated with at least one diamond layer. The diamond layer is smooth on all sides of the body with an Ra
摘要:
A finished or semi-finished item in sintered zirconia is characterized by a metallic appearance obtained by placing a previously shaped and sintered zirconia item in its finished or semi-finished shape in an oven in which there is a plasma containing hydrogen, bringing the item to a temperature of around 800.degree. C. or more, and maintaining the item at this temperature for a period of time from around a quarter of an hour to three hours, preferably two hours.
摘要:
A method for applying a coating 1 to a surface 2 of a mullite material 3 is specified, which comprises pretreating the surface 2 of the mullite material 3 by means of a plasma-chemical process in which molecular hydrogen is excited in such a way that plasma-activated hydrogen is produced S1, and applying an aluminum oxide-containing layer 4 by means of a PVD process to the pretreated surface 2 of the mullite material 3 S2. Furthermore, a mullite material 3 with a coating and a gas turbine component with such a mullite material 3 are specified.
摘要:
A method of making a sintered ceramic body comprising the steps of disposing a ceramic powder (5) inside an inner volume of a spark plasma sintering tool (1), wherein the tool comprises: a die (2) comprising a sidewall comprising inner and outer walls, wherein the inner wall has a diameter defining the inner volume; upper and lower punches (4,4′) operably coupled with the die, wherein each of the punches have an outer wall defining a diameter less than the diameter of the die inner wall, thereby creating a gap (3) between the punches and the inner wall when at least one of the punches are moved within the inner volume, and the gap is from 10 μm to 70 μm wide; creating vacuum conditions inside the inner volume; moving at least one of the punches to apply pressure to the ceramic powder while heating, and sintering; and lowering the temperature of the sintered body.
摘要:
Provided are a SmFeN magnetic powder which is superior not only in water resistance and corrosion resistance but also in hot water resistance, and a method of preparing the powder. The present invention relates to a method of preparing a magnetic powder, comprising: plasma-treating a gas; surface-treating a SmFeN magnetic powder with the plasma-treated gas; and forming a coat layer on the surface of the surface-treated SmFeN magnetic powder.
摘要:
Suggested is a novel coated particle of active ingredients with controlled release properties at pH-values from 10 to 14, wherein the active ingredient is selected from one or more construction chemical additives for the control of inorganic binders, characterized in that the coating comprises shellac, a process for its manufacture and the use thereof as an additive for mortars, dry mortars, cement slurries and/or concretes.
摘要:
An embodiment of the present inventions provides a method for preconditioning a semiconductor fabrication component using a plasma etching process and an optional enhanced ultrasonic and/or megasonic preconditioning step in order to eliminate the need for a burn-in period typically associated with said components, as well as extend the useful life of the component during its wear-out phase.
摘要:
The invention relates to a process for obtaining a hydrophobic coating on a substrate, preferably consisting of a glass material, a ceramic or a glass-ceramic, said process being characterized in that it comprises: a) a first deposition step, consisting in applying a primer first layer essentially consisting of the silicon oxycarbide SiOxCy type on said substrate, said primer layer having an RMS surface roughness of greater than 4 nm; b) an activation step, in which said SiOxCy primer layer is activated by a plasma of a gas chosen from the noble gases of the Ar or He type and the gases N2, O2 or H2O or by a plasma of a mixture of these gases; and c) a second deposition step, in which a hydrophobic coating comprising at least one fluorocompound, preferably a fluoroalkylsilane, is deposited on said first layer. The invention also relates to hydrophobic glazing comprising or formed by a substrate as defined above, this glazing being in particular used as glazing for transport vehicles or for buildings.
摘要:
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
摘要:
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.